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multivalued logic tools

Ibragim E. Suleimenov(®?, Yelizaveta S. Vitulyoval?, Sherniyaz B. Kabdushev(©'? &
Akhat S. Bakirov(®?*

Multivalued logics are becoming one of the most important tools of information technology. They are
in great demand for creation of artificial intelligence systems that are close to human intelligence,
since the functioning of the latter cannot be reduced to the operations of binary logic. At the same
time, the problem of improving the efficiency of using the results of research in multivalued logics,

as well as the problem of interpreting variables of multivalued logic, is acute. These problems create
certain interdisciplinary barriers and make it difficult to implement the results of research in the

field of multivalued logics in other fields of knowledge. It is shown that the problem of interpreting
multivalued logic variables can be removed by establishing correspondence with fuzzy logic variables.
Improving the efficiency of using of operations of multivalued logics and their variables can be
provided by using their close connection to Galois fields. This connection, among otherthings, makes
it possible to reduce any operations of multivalued logics, the number of variables in which is equal
to a prime number, to algebraic functions whose arguments take values in Galois fields. This allows,
among other things, to eliminate the very cumbersome constructions used in works on multivalued
logic and make its apparatus convenient for use in related scientific disciplines in information
technology. Direct verification of the adequacy of algorithms based on the use of Galois fields can

be carried out by means of radio-electronic circuits, examples of which are presented in the present

paper.

The emergence of non-Aristotelian logics (in particular, Lukasevich’s logic! N. Vasiliev’s "imaginary logic"?) at the
beginning of the twentieth century was obviously connected with the transformation of the general situation in
the philosophy of mathematics and the discussions concerning the problems of justification of mathematics and
logic as such’. As noted?, N. Vasiliev proposed a project of non-Aristotelian logic built without using the law of
contradiction, proceeding from the analogy with the non-Euclidean geometry of N. Lobachevsky, which excludes
the use of the fifth postulate of Euclid, who also initially called his geometry "imaginary”. The construction of
logics that partially or completely refuse to use the law of the excluded third ("every statement is either true or
false", to use the simplest version of the interpretation) has subsequently led to a great variety of multivalued
logics*?, including paraconsistent logics®, paracomplete logics’, etc.

De facto, there are currently a huge number of varieties of multivalued logics, but the question of how exactly
they are applicable to the description of the laws of thought remains open®.

In this respect, it is worth pointing out that, in accordance with the tradition going back to Aristotle, logic
was viewed as a science of how to correctly reason, as a science of the laws of thinking. This is the way J.W. Bull
interpreted it. In a famous monograph on the history of mathematics® the following passage from one of J. Boole’s
main works, "Investigation of the laws of thought", is given to illustrate exactly this approach, which prevailed
then in the field of logic creation:

"In the treatise before us we intend to investigate the fundamental laws of those operations of the mind
by which thinking is effected, in order to express them in the symbolic language of caleulus, and on this
basis to construct the science of logic and its method.”

Obviously, most modern works on multivalued logics have departed far enough from this tradition, otherwise
the problem of interpretation of multivalued logics and their classification would not be so acute.

The problem of applicability of multivalued logics to the reflection of laws of thought is most closely related
to the problem of interpreting the variables of multivalued logic, which remains relevant at present® Y. Whereas

*National Engineering Academy of the Republic of Kazakhstan, Bogenbai Batyr Str. 80, 050010 Almaty, Republic of
Kazakhstan. 2Gumarbek Daukeyev Almaty University of Power Engineering and Telecommunications, Baytursynov
Str. 126/1, 050013 Almaty, Republic of Kazakhstan. 3International Information Technology University, Manas Str,
34/1, 050013 Almaty, Republic of Kazakhstan. ®email: axatmr@mail.ru
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within binary logic, its variables can be uniquely associated with the notion of truth, such uniqueness is lost for
multivalued logics, which determines the relevance of research in the philosophy of multivalued logics, which
is currently being actively pursued'-2.

However, we must admit that a full-fledged return to the tradition that considers logic as a reflection of the
laws of thinking, obviously, cannot be realized otherwise than on an interdisciplinary basis. This, in turn, requires
overcoming pronounced interdisciplinary barriers. The language in which the works on multivalued logics are
written remains difficult to comprehend for alarge part of specialists in other fields of knowledge, in particular
in information technologies.

A definite step towards overcoming the interdisciplinary barriers is knowingly solving the problem of visibility
of variables of multivalued logics touched upon in'*!.

To solve this problem, it is reasonable to use the correspondence between multivalued logics and alge-
braic structures, such as Galois fields, which are widely used in modern information technologies, especially in
cryptography'®-Y. This correspondence can be most easily established when the number of variables of a par-
ticular multivalued logic is equal to the degree of the prime number p. Inthis case, a Galois field element GF(p™)
can be assigned to each value of a variable of multivalued logic in a one-to-one correspondence.

For Galois fields, in turn, the following illustrative interpretation can be proposed. As emphasized %', the
standard model of a signal is a function taking values on a set of real numbers. However, in the case when the
signal is reduced to a certain set of discrete levels that fit into a finite range of amplitude measurements, this
approach is not mandatory. A function taking values in any finite algebraic structure, such as Galois fields, can
also be used as a signal model. The simplest kind of Galois fields GF(p) is formed through a homomorphism of
a ring of integers to a ring of classes of deductions modulo p, where p is a prime number.

In this paper, we show that the problem of interpreting the variables of multivalued logic can be solved, for
example, by establishing a correspondence between the variables of multivalued logic and the variables of fuzzy
logic. Variables of multivalued logic can also be assigned to the levels of the digitized signal in the case when
the signal model is a function that takes values in Galois fields. More broadly, the variables of multivalued logic
can be interpreted through the establishment of links between concepts (e.g., philosophical categories). In all
these cases, it is important to have a tool that allows you to bring logical relationships to an algebraic form. For
the case when the set of variables of multivalued logic can be assigned to the field GF (p®), this problem is solved
through an analogue of the algebraic normal form presented in this paper.

Section 1 shows that the use of multivalued logic variables can be made explicit, including by mapping to
multivalued logic variables.

Section "Visualization of the variables of multivalued logic" shows that for the case when the number of vari-
ables is equal to a prime number, instead of the truth tables traditionally used in works on multivalued logic, it
is also possible to use an analog of the algebraic normal form (the Zhegalkin polynomial).

Section "Reduction of multivalued logic operations to algebraic ones" provides a specific example showing that
multivalued logic operations can be performed using electronic devices built on typical binary logic components.

Visualization of the variables of multivalued logic

Clear illustrations for the practical use of variables of multivalued logics are easiest to offer, focusing on the
approaches used in fuzzy logic. As is known, fuzzy logic establishes a certain correspondence between ranges of
continuously varying parameters and linguistic variables marking them?". Simplifying, the apparatus of linguis-
tic variables allows to "transform into words" the values of parameters, which, under certain conditions, can be
quantitatively measured with high accuracy.

It is interesting to note that linguistic variables were introduced in practice long before fuzzy logic was cre-
ated. For example, in maritime, there has traditionally been a set of commands "full astern, ... slow astern, ...,
slow ahead, ..., full ahead." A similar conclusion is also valid in relation to the compass rose (Fig. 1), which is
also traditionally used in maritime affairs.

Figure 1 emphasizes that the 8-element compass rose can be used to visually interpret the variables of 9-digit
logic.

The variables of such a logic can be put in correspondence with elements of the Galois field GF(3%), which,
in turn, can be constructed as an algebraic extension of the field GF(3).

Recall that the method of algebraic extensions can be viewed as a generalization of the method by which
complex numbers are constructed. Let us demonstrate the fact on a simple example of the construction of the
field GF{3%).

The field GF(3) contains three elements. They can be chosen as {—1,0, 1) by setting the following addition
rules.

1+1=—-1;-1-1=1 (1)

According to the method of algebraic extensions, an additional element 2, which is the root of an equation
irreducible (having no solutions) in this field, is attached to this (or any other) field.

flxy=0 2

where f(x) is a polynomial of degree n, x is a variable that takes values in GF(3).
In the special case where n = 2 such irreducible equation is the equation that allows one to construct complex
numbers

¥ 4+1=0 (3)
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Figure 1. 8-wind compass rose (Image was generated in Paint 22H2 https://apps.microsoft.com/store/detail/
paint/9PCFS5B6T72H?hl=ru-ru&gl=ru).

Then the element € can be treated as a logical imaginary unit, and the elements of the field GF(3?) can be
represented as

A= ag + l’(ll, (4)

where variables ag, a) belong to the main field.
In this case, we can perform algebraic operations with elements of the form (4) according to formulas (1)
and (3). For example,

i+i=—i;—i—i=i—i4+i=i—i=0, (5)
The rules of multiplication remain the same as in the classical use of complex numbers, in particular,

i2 =-—1;i- ((,11 —+ iuz) =ia) — ap, (6)
The elements of this field are listed in Table 1.
In general, any element of the field GF(3") can be represented as a linear combination of powers of 6.

n—1
A — Zejuj (7)
0

where 0 is a primitive element, a; are coefficients from the main field of GF(3), and n is the degree of the poly-
nomial f(x) generating the element 6.

The field GF(3?) contains eight non-zero elements (Table 1). Using the notation (4) as a logical coordinate
representation, these eight elements can be assigned to the directions of compass roses, which is shown in Fig. 1.

In this example there is a one-to-one correspondence between the elements of multivalued logic, linguistic
variables, and elements of the Galois field. More precisely, the elements of the compass rose allow all the above
interpretations, which are in a mutually unambiguous correspondence.

Thus, the problem of interpreting multivalued logic variables can be removed if these variables are inter-
preted through correspondence to fuzzy logic variables. Such an approach, as shown in Section "Reduction of

a a=-1 |laa=0 |laa=1
= —1 |—1—i¢ ~1 ECa
a =0 —i 0 i

a =1 1—i 1 141

Table 1. Elements of the Galois field GF(3?) in the used representation.
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multivalued logic operations to algebraic ones”, is generalizable. Namely, in this interpretation, rather a wide
range of different terms (including philosophical categories) can be used instead of fuzzy logic variables. Obvi-
ously, it is not the specific set of sounds or symbols that represent them that gives meaning to natural language
words, but the fact that each of these words is built into the overall structure of the language. Therefore, the
meaning of terms is actually determined by the connections between them. The "True—False" opposition, which
forms the methodological basis of binary logic, is only the simplest form of such a connection.

Let us show that for the case when the number of variables of multivalued logic is equal to a prime number,
any operations in such logic can be reduced to operations of addition and multiplication in the Galois field.

Reduction of multivalued logic operations to algebraic ones
The operations of multivalued logic are usually displayed in the form of truth tables. So, the following Table 2
are reflecting the operations of the logic of paradoxes by G. Priest®..

In these tables, symbols "0", "1" and "2" are denoting logical variables. The interpretation of the variables of
ternary logic as "Truth", "False”, "Uncertainly” dates back to the works of Lukasiewicz. The interpretation of such
operations (disjunction, conjunction, negation, etc.) as applied to ternary logic can be different, likewise, the use
of specific symbols in such tables is nothing more than a matter of agreement.

Such a tabular representation is not always convenient. Operations on logical variables, to which elements
of the Galois field are assigned, can be reduced to algebraic ones. For clarity, this can be done, for example, as
follows.

To avoid cluttering the notes, we will consider the case of an arbitrary function f(x, v}, taking values in the
field GF{p), where x, y are elements of the same Galois field. This function corresponds to a truth table given by
an ordered enumeration of elements f(x;, y;).6.j = 0,2...p — L

Consider the following expression

gilr)=1—(x—x) ()
where x;is a fixed element of the field GF(p).
It is known from Galois field theory that all nonzero elements of the field GF (p) are roots of the equation
gl _1=09 (%)

That is, any nonzero element of the field GF (), if raised to the p — 1 st power, gives one.
Consequently, the functions g;(x) have the following property

lx = x;
gilx) = { o £ 2 (10)
This allows us to treat them as a logical analogue of the 6-function.
Let us form the following polynomial
Hi=p—1
Floy) = > flry)ag) (1)
=0

where the values f(x;,y;) form a truth table like the Table 2.

When a particular pair of x;,, ;, values of logical variables (or more exactly, their corresponding Galois field
elements) is substituted into expression (11), all summands appearing in the sum in the right part of formula (11)
turn to zero because of relation (8) except the summand for which i = iy, j = jg is satisfied. Hence, it follows that

F(xio’yjo) :f(xio’yjo> (12)

We see that the polynomial (11) performs the same functions for multivalued logic as the Zhegalkin polyno-
mial for binary logic, Le., relation (11) indicates a specific algebraic function which realizes a given truth table.
It is also seen that relation (11) admits a generalization to the case of an arbitrary number of logical variables.

F(x,y) = y=0 |y=1 |y=2
x= 0 1 2
x= 1 1 2
= 2 2 2
Fizy)=nr |p=0 |p=1 |y=2
=10 0 0 0
=1 0 1 1
gs=2 a 1 2

Table 2. Values of the logical function corresponding to the operations of disjunction and conjunction in the
logic of paradoxes by G. Priest.
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Note that control methods based on fuzzy logic are currently being actively developed**?. There are known
works, in which such methods are proposed to be used for correcting the course of ships*.

Obviously, if a one-to-one correspondence is established between linguistic variables and Galois field ele-
ments, then all "commands” and "data” transformed to such variables can be further processed using algebraic
functions, which can be constructed knowingly by the method described above.

Of course, for real problems, the number of variables corresponding to an 8-element compass rose is insuf-
ficient, but this is not an obstacle.

For example, starting from the field GF(7), the elements of which can be chosen as (-3, -2,—1,0,1,2,3),
we can construct the field GF(72).

The elements of this field are also representable in the "two-coordinate” form (4), where the coeflicients ag, a;
belong to the field GF(7).

The entry (4) in this case, for clarity, can be interpreted, for example, as a discrete representation of the velocity
vector (in the plane), which fully corresponds to the traditional complex representation of vectors. The difference
is that using the field GF(7?), the velocity components are discrete, and they can be assigned to seven linguistic
variables "full astern, half astern, small astern, stop engine, small ahead, half ahead, full ahead".

The use of such a field also allows us to map the linguistic variables corresponding to the 16-item compass
rose, Fig. 2.

Namely, the number of non-zero elements of the field GF(72) is 48. Consequently, they are all roots of the
equation

1= (61 1= (- 1) (R x4 1) =0 (13)

Formula (13), among other things, shows that among the elements of the field GF(7?) there are 16 elements
that satisfy the equation

X6 —-1=0 (14)

These 16 elements can be viewed as roots of the 16th degree from one, and they form a group by multiplica-
tion. Consequently, they can be assigned linguistic variables corresponding to the 16-element compass rose.

Thus, the mutually unique correspondence between multivalued p”-logics, where p is prime number, # is
integer and Galois fields GF(p™) creates all preconditions for making operations on variables of multivalued
logic as clear as possible.

It can be argued that visualization in this respect is provided not so much for variables of multivalued logic
as for elements of Galois fields. However, the visual representation of operations on the variables of multivalued
logic mapped through Galois fields has also a philosophical aspect directly related to the problem of interpreta-
tion of the values of the mentioned variables and to the problem of correlation of laws of thinking and multi-
valued logics touched upon in®.

S

(41)*

Figure 2. 16-element compass rose (Image was generated in Paint 22H2 https://apps.microsoft.com/store/
detail/paint/9PCFS5B6T72H?hl=ru-ru&gl=ru).
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Namely, the meaning of the variables of binary logic relates to the philosophical category of truth. This cat-
egory belongs to the number of basic concepts, the question about the nature of which is closely related to the
problem of the existence of undefined concepts. Indeed, to "define" means to reveal the meaning of one term
through others. Trying to reveal all the terms available in a language in this way leads knowingly to a vicious
circle.

Objective dialectics finds a way out by defining the basic categories through the oppositions "quantity—qual-
ity," "content-form," etc. Such an approach, in particular, was used ®** in order to reveal as correctly as possible,
the meaning of the category "information”, which it was suggested to consider as a philosophical category paired
with the category of matter.

The problem of adequate interpretation of the concept "information” as emphasized in**?” becomes more
and more relevant in connection with the research in the field of artificial intelligence, but for the purposes of
our article the approach of "definition through contraposition” itself is more important.

Namely, it shows that for the definition of basic notions the most important is the structure of relations
between them, and contraposition is only one of the forms of such relations, and the one that knowingly cor-
responds to binarylogic and Galois binary fields. Obviously, other forms of connections between basic concepts
cannot be reduced to a simple contraposition.

This indicates for example the existence of a pronounced methodological (philosophical} aspect of the devel-
opment of command languages (even at the level of specific technical systems), which constitute a closed whole
at the expense of relations written in algebraic form. Moreover, it is extremely difficult to develop closed "lan-
guage" systems at the level of abstraction. It is much more convenient (and illustrative) to do this by solving
specific problems, for example, those related to control of moving vehicles, in terms of fuzzy logic converted
into algebraic form.

This formulation of the question makes it even more urgent to ensure the visibility and usability of multivalued
logics. The following section deals with specific computational tools oriented to the use of logics corresponding
to the fields GF(7%).

This example allows you to clearly demonstrate that it is possible to implement various kinds of devices that
perform calculations in terms of multivalued logic, but at the same time built on the basis of typical electronic
components using binary logic.

Computational implementation of seven-digit logic operations

Currently, algorithms and schemes of radioelectronic devices that perform calculations modulo are widely
represented in the literature. Thus, such algorithms are used in encryption, coding devices, in compression and
transmission of information, in automation devices?® 30,

As shown above, any functions whose arguments are variables taking values in the Galois field can be explicitly
reduced to algebraic expressions which involve only multiplication and addition operations modulo p.

Consequently, multipliers and adders modulo p are the basis for automating any operations on logical (lin-
guistic) variables. Devices of this type can be implemented by rather simple means, as it is proved below.

The block diagram of the multiplier of the considered type is presented in Fig. 3. The scheme includes adders
(marking on the scheme is ), which count the number of units on the inputs a; corresponding to the number
representation in binary form. It is supposed, that on the input of the system no signals corresponding to number
7 or number 0 are input. This is acceptable, since when calculating modulo 7,7 = 0(7) takes place, therefore, in
this case, the calculated product is equal to zero. In this case Ta; can take values 1 or 2, as in the binary notation
of numbers that vary from 1 to 6, there are at least one and at most two units.

Then
6 - azazai=(y)azdral (15)

where #; are characters inthe binary notation of the number, a bar over the character means the inversion opera-
tiom, i.e., 0 changes to 1 and vice versa.

Due to the associativity of multiplication modulo, the product of any two non-zero elements of the field GF(7)
can be reduced to the multiplication of two numbers in binary representation, and in both of these numbers only
one of the symbols a; will be non-zero.

Correspondent operation is realized by the inverter block (the standard inverter designation is used in the
scheme) controlled by the signal taken from ¥ elements. Iflogical zero is formed on the output of these elements,
signals a; and b; remain unchanged, iflogical one, they take inverse values.

The signal sets 3; and b;, reduced to a format in which only one of the variables of these sets is non-zero, are
fed to the direct multiplier block (schematic designation—&).

The signal set ¢; from the output of the direct multiplier is fed to the output inverter block, which operates in
the same way as the input inverter block.

The schematic diagram of the direct multiplication block is shown in Fig. 4.

This block works as follows.

The prime number 7 is a special case of prime Mersenne numbers, represented in the form p,, = 2" — 1.
Such numbers have the following property. Multiplication of any number by 2 modulo pyy, results is a cyclic
permutation of symbols. For example,

2. mpaao= (718002 (16)

where 4; are binary characters.
Let us consider the product of two numbers B - A written in binary notation. We have

Scientific Reports |

{2023)13:1108 | https://doi.org/10.1038/541598-023-28272-1 nature portfolio



www.nature.com/scientificreports/

i) &
3 3 cs
—
e Ly @

L1

S
8

3
Ry

Figure 3. Block diagram of the modulo multiplier by seven (Image was generated in PowerPoint Microsoft 365
https://www.microsoft.com/en-ww/microsoft-365/powerp oint).

B-A=mgbs 22 At b2t A b 20 A (17)

According to formula (16), products 2™ - A may be written through cyclic permutations, i.e. the product
calculated modulo 7, is the sum of the following three numbers written in binary form as

by - azaza; (18)
by - azaras (19)
53 cdy1dzdz (20)

where only one of the b; values is 1, and the restare 0.
Each of the binary three-digit numbers appearing in formulas (18)—(20) can also be written in powers of two.
Consequently, the result of multiplication in calculations modulo 7 can be written as

B-A=pyos 4¢3 20 40 25 @D
where
c3 = bras + byaz + bsaq (22)
¢ = brag + baay + bsas (23)
1 = blal + b2a3 + bgaz (24)

Since inverters are used in the circuit under consideration, in formula (22)-(24) only one of the values 4;
and only one of the values b; is equal to 1, the rest are equal to 0. Consequently, among all the values ¢; only one
is also equal to 1, and the rest are 0.

Therefore, the result of the product corresponds to the three outputs of the circuit, on which the logical vari-
ables ¢; are formed.

Since of all the values b; only one is equal to 1, then three options are possible.

Ifb = 1, then
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Figure 4. Schematic diagram of a direct multiplier (Image was generated in PowerPoint Microsoft 365 https://
www.microsoft.com/en-ww/microsoft- 365/powerpoint).

(¢3.¢2,¢1) = (43,03, 4d1) (25)
Ifby = 1, then

(c3,c2,01) = (a3, 41, 43) (26
Ifb; = 1, then

(c3.c2.01) = (a1, a3,a2) 27

If; = 1, thenthe state of outputs c_i repeats the state of inputs a;, if bz = 1, thenthere is a cyclic permutation
one position to the right, and if b3 = 1, then one position to the left.

A scheme that provides such a permutation can be implemented in various ways. One of them is based ona
set of operations, which can be represented schematically as follows.

NO[(0,1,0)0R{(0,0, 1)] — NO(0,1,1) — (1,0,0) (28)

(0,1,0)0R(0,0,0) — (0,1,0) (29)

These notations imply that the NO and OR operations are applied to each of the boolean variables appearing
in the sequences. Formulas (28) and (29) show only a particular case; they obviously remain valid for cyclic
permutations as well.

From these formulas it follows that the permutation corresponding to formulas (25)-(27) can also be imple-
mented in the way that is implemented by the scheme of Fig. 4.
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Figure 5. Multiplier circuit modulo seven, assembled in the NI Multisim program. (Image was generated in
NI Multisim 14.1 https://www.ni.com/ru-ru/support/downloads/software-products/download. multisim html#
306441).

I

Key = A

In this case, if b; = 0, an additional inversion of the signal is performed, which corresponds to the execution
of operation (28). According to the diagram in Fig. 4 this operation is performed by the adder, the output of
which is connected to the output inverter.

The complete scheme, made in the NI Multisim application®, is shown in Fig. 5.

As follows from the above description of the multiplier, its scheme takes into account the most important
specific features of computational systems carrying out operations in Galois fields, which are directly connected
with operations of multivalued logic.

Conclusion
This paper shows that the problem of interpreting the variables of multivalued logic does not necessarily have
to be solved through the involvement of the philosophical category of truth. A possible option is to use a close
connection between the variables of multivalued logics, whose number of elements is equal to the degree of a
prime number, with Galois fields. In this case it is possible, among other things, to establish a connection between
the variables of multivalued logic and the linguistic variables used in fuzzy logic. In addition, this relationship
allows to reduce any operations on variables of multivalued logic to the calculation of algebraic functions whose
arguments take a value in the Galois field. Otherwise, any operations of multivalued logics of the specified type
can be reduced to the operations of addition and multiplication modulo the degree of a prime number.

Such operations, in their turn, can be realized by means of radio electronic circuits assembled on typical
elements, performing operations of binary logic. At the same time, as shown in the example of implementation
of such circuits, they can be quite simple.

Data availability
All data generated or analysed during this study are included in this published article.

Received: 4 October 2022; Accepted: 16 January 2023
Published online: 20 January 2023

References
1. Lukasiewicz, J. On three-valued logic. The Polish Review, 43-44 (1968).

Scientific Reports | (2023) 13:1108 | https://doi.org/10.1038/s41598-023-28272-1 nature portfolio



www.nature.com/scientificreports/

2

)

10.
11.
12
. Suleimenov; I E., Gabrielyan, O. A., Bakirov, A. S, & Vitulyova, Y. S. Dialectical understanding of information in the context of

14.

15.
1s.
17.
18.

19.

20.
21
22,
23.
24

25.

26

27.

28.

29,

30.

31

Gomes, E. L. Thinking about Contradictions: The Imaginary Logic of Nikolai Aleksandrovich Vasilev: V. Raspa, Translated by Peter
N. Dale. Heidelberg, New York: Springer International Publishing AG, 2017. xxi+ 160 pp (2019). Hardcover US 109.99,e-bookUS
84.99. Hardcover ISBN 978-3-319-66085-1. eBook ISBN 978-3-319-66086-8. https://doi.org/10.1080/01445340.2019.1591669.

. Kline, M. Mathematics: The Loss of Certainty Vol. 686 (Galaxy Books, 1982).
. Jo,8.B.,, Kang, J. & Cho, J. H. Recent advances on multivalued logic gates: a materials perspective. Adv: Sci. 8(8), 2004216. https://

doi.org/10.1002/advs.202004216 (2021).

. Yoo, H. & Kim, C. H. Multi-valued logic system: New opportunities from emerging materials and devices. J. Mater. Chem. C9(12),

4092-4104. https://doi.org/10.1039/D1TC00148E (2021).

. Zamansky, A. On recent applications of paraconsistent logic: an exploratory literature review. | Appl. Non-Classtcal Logics 29(4),

382-391. https:;//dol.org/10.1080/11663081.2019.1656393 (2019).

. Herndndez-Tello, A., Macias, V. B. & Coniglio, M. E. Paracomplete logics dual to the genuine paraconsistent logics: The three-

valued case. Electron. Notes Theor. Comput. Sci. 354, 61-74. https//doi.org/10.1016/j.entcs.2020.10.006 {2020).

. Gabrielyan, O, Vitulyova, E. & Suleimenov, L. Multi-valued logics as an advanced basis for artificial intelligence (as an example of

applied philosophy). Wisdom 21(1), 170-181. https://doi.org/10.24231/wisdom.v21i1.721 (2022).

. Nakayama, Y., Akama, S. & Mural, T. Deduction system for decision logic based on many-valued logics. Int. [ Adv. Intell. Sist.

11(1/2), 115-126 (2018).

Lethen, T. Godel on many-valued logic. Rev. Symb. Log. https://doi.org/10.1017/51755020321000034 {2021).
Rescher, N. Topics in Philosephical Legic Vol. 17 (Springer, 2013).

Kahane, H., Hausman, A. & Boardman, F Legic and Philesophy: A Modern Introduction (Hackett Publishing, 2020).

the artificial intelligence problems. In IOP Conference Series: Materials Science and Engineering, Vol. 630, No. 1, p. 012007, 2019,
October). IOP Publishing.

Suleimenov, L, Bakirov, A., & Moldakhan, I. Formalization of ternary logic for application to digital signal processing. In Energy
Management of Municipal Transportation Facilities and Transport, 26-35. Springer, Cham, 2019, December https://doiorg/10.
1007/978-3-030-57453-6_3.

Dey, 5., & Ghosh, R. (2018). 4-bit crypto S-boxes: Generation with irreducible polynomials over Galois field GF (24) and crypta-
nalysis. Cryptology ePrint Archive.

Wang, N. et al. Galois fieldbased image encryption for remote transmission of tumor ultrasound images. IEEE Access 7, 49945-
49950, https://doi.org/10.1109/ACCESS.2019.2910563 (2019).

Khari, M. ef al. Securing datain Internet of Things (IoT) using cryptography and steganography techniques. IEEE Trans. Syst. Man
Cybern. Syst. 50(1), 73-80. https://dolorg/10.1109/TSMC.2019.2903785 (2019).

Moldakhan, I, Matrassulova, D. K., Shaltykova, I. B. & Suleimenov, I. E. Some advantages of non-binary Galois fields for digital
signal processing. Indonesian | Electr. Eng. Comput. Sci. 23(2), 871-877. https://doi.org/10.11591/ijeecs.v23.12.pp871-878 (2021).
Vitulyova, E. 8., Matrassulova, D. K. & Suleimenow, I. E. New application of non-binary Galois fields Fourier transform: Digital
analog of convolution theorem. Indonesian J. Electr. Eng. Compuit. Sci. 23(3), 1718-1726. https://doiorg/10.11591/ijeecs.v23.i3.
pP1718-1726 (2021).

Mittal, K., Jain, A., Vaisla, K. 8., Castillo, O. & Kacprzyk, ]. A comprehensive review on type 2 fuzzy logic applications: Past, present
and future. Eng. Appl. Artif. Intell. 95, 103916. https://doi.org/10.1016/j.engappai.2020.103916 (2020).

Marcos, . On aproblem of da Costa. Essays on the Feundations of Mathematics and Logic 2, 39-55 (2005).

Rezk, H., Aly, M., Al-Dhaifallah, M. & Shoyama, M. Design and hardware implementation of new adaptive fuzzy logic-based
MPPT control method for photovoltaic applications. IEEE Access 7, 106427-106438. https://doi.org/10.1109/ACCESS.2019.29326
94(2019).

Sharma, R., Bhasin, §., Gaur, P. & Joshi, In. A switching-based collaborative fractional order fuzzy logic controllers for robotic
manipulators. Appl. Math. Model. 73, 228-246. https://doi.org/10.1016/j.apm.2019.03.041 (2019).

Sedova, N., Sedov, V., Bazhenov, R. & Bogatenkoy, S. Neural network classifier for automatic course-keeping based on fuzzy logic.
. Intell. Fuzzy Syst. 40(3), 4683-4694. https://doi.org/10.3233/JIFS-201495 (2021).

Vitulyova, Y. 8., Bakirov, A. 5., Baipakbayeva, S. T., & Suleimenov, I E. Interpretation of the category of “complex” in terms of
dialectical positivism. In IOP Conference Series: Materials Science and Engineering (Vol. 946, No. 1, p. 012004), 2020, October. IOP
Publishing. https://doi.org/10.1088/1757-899X/946/1/012004.

Kalimoldayev, M. N. et al. Methodological basis for the development strategy of artificial intelligence systems in the Republic of
Kazakhstan in the message of the president of the Republic of Kazakhstan dated October 5, 2018. News of the National Academy
of Sciences of the Republic of the Kazakhstan. Ser. Geel. Tedh. Sci. 6, 47-54. https://doi.org/10.32014/2018.2518-170X.34 (2018).

Suleimenov, L. E., Vitulyova, Y. 8., Bakirov, A. 8., & Gabrielyan, O. A. Artificial Intelligence: what is it? In Proceedings of the 2020
6th International Conference on Computer and Technology Applications, 22-25, 2020, April. https://dol.org/10.1145/3397125.33971
41.

Moysis, L., Petavratzis, E., Volos, C., Nistazakis, H. & Stouboulos, I. A chaotic path planning generator based on logistic map and
modulo tactics. Robot. Autonom. Syst. 124, 103377, https://doi.org/10.1016/j.r0bot. 2019.103377 (2020).

Prasanna, I, Sriram, C. & Murthy, C. R. On the identifiability of sparse vectors from modulo compressed sensing measurements.
IEEE Signal Process. Lett. 28, 131-134. https://doi.org/10.1109/LSE.2020.3047584 (2020).

Tiplea, E L, Iftene, S., Teseleanu, G. & Nica, A. M. On the distribution of quadratic residues and non-residues modulo composite
integers and applications to cryptography. Appl. Math. Comput. 372, 124993, https://doi.org/10.1016/j.amc.2019.124993 (2020).

NIMultisim 14.1 https//www.ni.com/ru-ru/support/downloads/software-products/download. multisim html#306441..

Author contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis
were performed by Suleimenov I.E., Vitulyova Ye.S. Kabdushev Sh.B., Bakirov A.S. The first draft of the manu-
script was written by Suleimenov LE. and all authors commented on previous versions of the manuscript. Bakirov
A.S. made all revisions according to reviewers comments. All authors read and approved the final manuscript.

Funding
This research has been/was/is funded by the Science Committee of the Ministry of Higher Education and Science
of the Republic of Kazakhstan (Grant No. AP14870281).

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to A.S.B.

Scientific Reports |

{2023)13:1108 | https://doi.org/10.1038/541598-023-28272-1 nature portfolio



www.nature.com/scientificreports/

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access 'This article is licensed under a Creative Commons Attribution 4.0 International

Caml ] icense, which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

Scientific Reports |

{2023)13:1108 | https://doi.org/10.1038/541598-023-28272-1 nature portfolio



PLOS

Check for
updates

G OPENACCESS

Citation: Suleimenov IE, ¥itulyova YS,
Matrassulova DK {2023} Features of digital signal
nrocessing algorithms using Galois fields GF
(2"+1). PLoS ONE 18(10): 60293294,

Editor: Pierluigi Vellucci, Roma Tre University:
Universita degli Studi Roma Tre, ITALY

Received: March 10, 2023
Accepted: October 10, 2022
Published:; October 25, 2023

Copyright: ® 2023 Suleimenov et al. This is an
open access arlicle distributed under the terms of
the , which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.

Data Availability Statement: There is no additional
data, all data is available in the article itself.

Funding: This research has beenAwas/is funded by
the Science Committee of the Ministry of Higher
Education and Science of the Republic of
Kazakhstan (Grant No. AP14870281} The funders
had no role in study design, data collection and
analysis, decision to publish, or preparation of the
manuscript. Al authors receive a salary from the
received research grant.

Competing interests: The authors have declared
that no competing interests exist.

RESEARCH ARTICLE

Features of digital signal processing
algorithms using Galois fields GF(2"+1)

Ibragim E. Suleimenov 1, Yelizaveta S. Vitulyova 2, Dinara K. Matrassulova 2*
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Abstract

An alternating representation of integers in binary form is proposed, in which the numbers -1
and +1 are used instead of zeros and ones. It is shown that such a representation creates
considerable convenience for multiplication numbers modulo p = 2"+1. For such numbers, it
is possible to implement a multiplication algorithm modulo p, similar to the multiplication
algorithm modulo the Mersenne number. It is shown that for such numbers a simple algo-
rithm for digital logarithm calculations may be proposed. This algorithm allows, among other
things, o reduce the multiplication operation modulo a prime number p =2"+1 to an addition
operation.

Introduction

Currently, non-binary Galois fields are increasingly used in information technologies [ , |, in
particular, in information security systems [, ]. The example is a variety of Galois fields GF
(p), which are residue classes of the ring of integers modulo some prime number p. The advan-
tages of using such fields for digital signal processing were clearly demonstrated in [ , |.

There is also a number of reports devoted to the development of electronic circuits that per-
form addition and multiplication operations modulo in current literature, for example, [ , |.
Such reports are closely related to research in the field of practical use of Galois fields, since the
operations of addition and multiplication modulo an integer can be considered as operations
on the elements of the Galois field. The interest is connected, among other things, with the fact
that such operations are of significant interest for cryptography [, ].

The development of electronic circuits operating in Galois fields is also of interest [rom the
point of view of improving artificial intelligence (AI) systems. Namely, as it was shown in the
reports[ , ] the further development of Al assuming its gradual approach to the biological
prototype, cannot exclude the transition to multivalued logic, since human thinking is irreduc-
ible to binary logic. It is appropriate to emphasize that the problem of creating of Al approach-
ing a biological prototype is of considerable interest, including from the point of view of
revealing the essence of intelligence as such [ , |

Multivalued logic, dating back to the works of Jan Lukasiewicz [ ], has been actively devel-
oping recently [ - |, but the level of its practical use obviously does not meet the existing
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potential [ ]. If the number of values accepted by variables of multivalued logic is equal to an
integer power of some prime number, these values can be put in one-to-one correspondence
to the elements of the Galois field. Consequently, any operations in this case are reduced to
addition and multiplication, ie., the improvement of electronic circuits that perform addition
and multiplication modulo an integer is also of interest from this point of view. The possibili-
ties arising in this case are disclosed, in particular,in [ ].

In turn, among the simple Galois fields GF(p), a special place is occupied by fields for which
the number p is equal to the Mersenne prime number. Such numbers are representable as

p=2 1 1)

where n are specifically selectable integers, the first of which are, 2, 3, 5, and 7.

Such numbers are used, in particular, to generate pseudorandom numbers [ ]. Specifi-
cally, a pseudorandom number generator called the Mersenne twister is known, developed in
1997 by Japanese scientists M. Matsumoto and T. Nishimura [ [, directly based on the use of
Mersenne numbers.

There are works in which the expediency of using such numbers for data transmission is
justified [ , ], ete.

A very remarkable feature of the Mersenne numbers p,,, is the fact that Galois fields GF(p,,.)
allows one to implement fairly simple electronic circuits that perform addition and multiplica-
tion operations modulo p,,,, i.e., those operations to which any other operations performed on
the elements of the field GF(p,,) are reduced. Examples of such systems and algorithms of their
functioning are reflected in the current literature, for example [ ].

In this paper, it is shown that Galois fields, GF(p), for which p = 2"+1., are also of consider-
able interest for digital signal processing. One of these fields is the GF(257) field, which is
advisable to use for digital signal processing with a standard number of levels equal to 256.
Thus, it can be argued that for this case there is a very specific Galois field, which, among other
things, allows you to bring signals that meet existing standards [ |, to logical operations.

Advantages of Mersenne numbers for computing systems modulo
an integer

In relation to digital signal processing, the following property of Mersenne numbers is of inter-
est. Multiplication of a number @ written in binary form by 2 modulo the Mersenne number is
recused to cyclic permutation of characters takes place. For example, for calculations in the
field GF(7), next equality is true

2 aya,8,= (73,84, (2)

where ¢; are binary characters.

The convenience of using such a property for digital signal processing in Galois fields is as
follows. Let us consider the field GF(127) whose characteristic is a Mersenne number with
n = 7. Note that this example is also important from a practical point of view, since a scale with
127 levels is often used in digital signal processing too. In binary form, any of the elements of
the GF(127) field can be represented as

A=2-a,+2-a,+ - +2-a,+2"a, (3)
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We emphasize that the number of elements represented in the form (3) when calculating in
terms of ordinary integers is 128, but

1111111 = 0000000(127) (4)

Consequently, the number of field elements given by Formula ( ) is indeed 127.
Let the element A, represented in the form (3), be multiplied modulo 127 by the element B,
represented in the same form.

B=2" b, +2° b+ 4200, +2° . p, (5)
Then the result of the product is the sum of the following terms
Avby=(2a, +2% a,+-- +2 . a, +2" a)b,

21-A-b1:(26-a5+---+22-a1+21-a0+20~a6)b1 (6)

2 A b =(2"a,+2 a,+ - +2"a,+2"a)b,

Grouping the terms at the same powers of two, we get

¢ = aghy +agh, + -+ agby

¢y = aghy +ab, 4+ +agh, (7)

¢y = aghy +agb, + -+ ab,

We emphasize that although Formula ( ) include only quantities taking the values ¢ or 1,
no such restrictions are imposed on the summation result itself, i.e., the sum is calculated in
the sense of the original field GF(127).

The algorithm based on Formula ( ') allows for a fairly simple circuit implementation,
therefore, it makes sense to consider whether there is no way to implement its analogue for
fields GF(2"+1), in particular, for the field GF(257). This is due to an obvious consideration:
the signal digitization scale, which provides for the use of 256 levels, is one of the most com-
mon [ |.

Algorithms of calculations modula in the special case of the field
GF(17)

Let’s start from the consideration of one of the simplest fields of type GF(2"+1), specifically
from the field GF(17).

This field, as well as other Galois fields, is a ring of residue classes of the ring of integers, in
this case modulo 17. Traditionally, positive integers are used when representing field elements,
however, this is not mandatory at all. In particular, as emphasized in [ ], it is advisable to use
a set of elements {—1,0,1} to represent the field GF(3), where the use of curly brackets empha-
sizes that the set is being considered.
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Similarly, the field GF(17) can be considered as a set of elements
GF(17) ={-8,-7,...,0,...7,8} (8)

The selection of the representing elements is arbitrary up to the modulo comparison opera-
tion, for example,

—8=9(17) (9)

The advantages of such a choice for the purposes of this work are demonstrated by Tables
and .In these tables, the degrees of the elements of the field under consideration are counted
in the usual representation through positive integers and in the representation (8),
respectively.

Both tables demonstrate the fact that all nonzero elements of the field under consideration,
as follows [rom the general theory of Galois fields, obey the equation

xP—1=0 (10}

From this relation, in particular, it follows that any element of the field under consideration
can be represented as

x = (V1) (), (V) (V) (11)

wheres; = 0; 1.
We show this by first revealing the meaning of the formal notation { ¥/1) , using Tables

and .
The ratio (10) can be rewritten in the form

(¥ —1=0 (12)

Formula (12) emphasizes that there are only two different values of the element z = »®, This
corresponds to the fact that in the fourth column of Tables and there are only two different
elements.

Table 1. The degrees of the elements of the GF(17) field in terms of positive integers.

n=10 n=72 n=4 n=35 n=16
1 1 1 1 1
2 4 16 1 1
3 g 13 16 1
4 16 1 1 1
5 8 13 16 1
6 2 4 16 1
7 15 4 16 1
8 13 16 1 1
9 13 16 1 1
10 15 4 16 1
11 p 4 16 1
12 8 13 16 1
13 16 1 1 1
14 13 16 1
15 16 1 1
16 1 1 1
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Table 2. Degrees of elements of the field GF(17) in the representation (8).

n=10 n=72 n=4 n=35 n=16
1 1 1 1 !
2 4 -1 1 !
3 -8 -4 -1 1
4 -1 1 1 !
5 8 -4 -1 1
6 2 4 -1 1
7 -2 4 -1 1
8 -4 -1 1 1
8 -4 -1 1 1
7 -2 4 -1 1
6 2 4 -1 1
5 8 -4 -1 1
4 -1 1 1 !
3 -8 -4 -1 !
2 4 -1 1 1
1 1 1 1 1
There are two other similar forms of representation of the relation (10).
(x4 —1=0 (13)
(x*)° —1=0 (14)

Formula (13) emphasizes that there are four different values of the element z = x*, which
are found in the third columns of Tables and . Similarly, as the ratio (14) shows, there are
eight different elements z = x”, which are found in the second columns of these tables.

Accordingly, formally we can write

(V1), =16 (15)
(V1), =4;13 (16)

(V1), = 2;8;9;15 (17)

The eight remaining y elements highlighted in Tables and in color represent primitive
elements. They have the property that ™ = 1 if and only if 1 = 16, We have

(V1), = 3;5;6;7;10;11;12;14 (18)

The proved relation (11) follows directly from Formulas (  )-( ), and the choice of ele-
ments ( %) I is determined by the following considerations. Any nonzero element of the field
under consideration represents some degree of one of the primitive elements y listed in the
right part of Formula ( ). This follows from the general theory of Galois fields, and for clarity
it can be demonstrated as follows.

All the degrees of the primitive element y of the field under consideration from Oto 15 are
different. At the same time, all these degrees are the roots of Eq (), i.e., they exhaust the ele-
ments of the field.
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Consider the power of ¥ and represent the number m, where 0<3#<'15 in binary form

"= M, 1, 1 (19)
where m; are binary characters.
Such an entry means that
m:23~m4+22-m3+21-m2+20~m1 (20)

Therefore, the degree ¥ is representable as
Y= RO (21)
This expression coincides with (11) if we put the corresponding root of unity equal to one
of the powers of the primitive element appearing in (21).
For further it is essential that when moving to the representation of the elements of the field

under consideration in the form (8), the roots of unity (15)-(18) acquire a symmetrical form
that and shows

(V1), =1 (22)
(Y1), =4;—4 (23)
(Y1), = 2,8 —8 —2 (24)

(V1), = 3;5,6,7 =7, —6; —5; —3 25)

This determines the convenience of representation in the form (8): all elements of the field
under consideration, with the exception of primitive ones, are representable as powers of two,
which is also emphasized by

This fact generates another efficient algorithm for multiplying field elements, de facto based
on the digital logarithm method. Digital logarithm has been considered in many reports, in
particular in [, ], but this problem, if put in a general form, remains unresolved.

However, for practical needs, it can be limited to solving it for specific Galois fields. In par-
ticular, within the framework of this work, it is solved in relation to Galois fields of the form
GF(2"+1), which, as noted above, also includes the field GF(257), which corresponds to the
number of digital signal levels that is often used in practice.

In relation to the GF(17) field, the digital logarithm algorithm can be constructed as
follows.

1. The field element is identified as belonging to a set of primitive elements.

2. If this element belongs to the specified set, then the value of ##; in Formula () is chosen to
be 1, if not, then zero.

3. If sy = 1, then the element in question is multiplied by 3 modulo 17. As a result of the
representation in the form (8), the element is reduced to the power of two. When using
binary notatiomn, this means that the logical unit will stand only on one of the positions,
which identifies the exponents ., #; and .

4. The set of exponents of degrees m; completes the procedure of digital logarithm.

Solving the digital logarithm problem, in turn, makes it possible to significantly simplify the
algorithm for multiplying field elements on each other. Indeed, in this case, the operation is
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reduced to the addition of numbers (20) modulo 16. Carrying out such an operation by circuit
means does not cause difficulties, since it boils down to the usual addition of binary numbers
with the rejection of the highest digit.

The described algorithm really makes it possible to significantly simplify the multiplication
operation in the GF(17) field, but, firstly, the question of the circuit identification of primitive
elements remains open, and secondly, this algorithm is very specific. Indeed, it is built on the
tact that any of the primitive elements is reduced to the power of two (with a positive or nega-
tive sign) by multiplying by a fixed element (for example, by 3). This situation is not realized
for other Galois fields of the type under consideration, in particular, for the field GF(257),
which is of primary interest from the point of view of practical applications.

Alternating binary encoding

‘We show that the indicated problem is solved using alternating encoding of elements of Galois
fields of the type under consideration.

Again, let’s start from the example of the field GF(17). Consider an expression of the form
(3), but only now we will understand by «; the numbers taking the values +1 and -1.

A=2a,+2 a,+2-a +2"-a, (26)

It can be easily shown that the result of calculations by Formula (. ) in this case will certainly

give an odd number.
In total, there are 2* such combinations of the form (3), and the maximum number is

A, =20 42842+ 20 =15, (27)

and, accordingly, A, = —15.

Otherwise, the set of numbers given by Formula () coincides with the set of odd numbers
in the range from -16 to +16. We exclude zero from consideration, which is quite justified,
since the multiplication operation is being considered. Then the number of combinations of
the form (26) in the case under consideration coincides with the number of non-zero elements
of the field GF(17).

All possible combinations are listed in Tables and . refers to the elements of the
tield that are not primitive, —vice versa. The first four columns of these tables display
the numbers a; appearing in expressions (26), the fifth column displays the result of summa-
tion in terms of ordinary integers A, the sixth—displays the result of reduction modulo 17 to
the form (8) A.

Table 3. Alternating binary representation of elements of the GF(17) field that are not primitive.

s , a ay A, A
1 1 -1 1 1 1
1 1 -1 1 -15 Z
1 1 -1 1 -13 4
1 1 1 1 -9 8
1 1 1 1 1 1
1 1 1 1 5 -2
1 1 1 1 13 -4
1 1 -1 1 S -8
1 1 -1 1 1 1
PLOS ONE | Qctober 25,2023 7/12



PLOS ONE

Features of digital signal processing algorithms

Table 4. Alternating binary representation of primitive elements of the GF(17) field.

s i, a; i, A A
1 1 -1 1 3 3
1 1 1 1 -11 6
1 1 -1 1 -5 -5
1 1 1 1 7 7
1 1 1 1 3 -3
1 1 -1 1 11 -6
1 1 1 1 5 5
1 1 -1 1 o7 -7
1 1 -1 1 3 3

It can be seen that the modulo reduction field of the numbers represented in the form (26)
exhaust the set of nonzero elements of the field GF(17). Consequently, such a representation
can be used along with any other, especially if we take into account that representatives of the
residue classes of the ring of integers modulo a prime number can be chosen arbitrarily.

As applied to the field under consideration, a representation of the form (26) in which a; =
+1 has a property similar to the property possessed by Mersenne primes. Namely, the multipli-
cation of the number written in the representation (26), which hereafter we will call alternat-
ing, by two can be displayed as the following operation

2-A:23-a2+22-a1+21-a0—20-a3 (28)

This follows from the fact that the element -1 is the root of Eq () considered at z = x®or
from the fact that in the field under consideration 2*=—1(17).

Consequently, the operation of multiplication by two when using an alternating binary
representation of a number is reduced to a cyclic permutation of binary elements in the entry
resulting from (18) with a change in the sign of the element being rearranged. We have

2 A=2 amaa, =aaa,(—a,) (29)

It can be seen that this property is indeed analogous to the property possessed by the opera-
tion of multiplication by two in fields formed using Mersenne numbers (2).

Property (29), in particular, allows you to implement an algorithm for multiplying two ele-
ments of the field GF(17), represented in alternating binary form, similar to the algorithm
given by Formulas ( ), ( ).

Indeed, the result of multiplying the number A, represented in alternating form (26), by the
number B, represented in the same form

B=2" b, +2" b, +2 b +2" b (30}

it is the sum of the following terms

Avbhy=(2"a,+2" a,+2" a +2" a)b, (31)
A =2 a,+2 o +2 a, =2 ayb, (32)
2P A by =(2a +2 a2 a -2 a,)b, (33)
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22 A b, =(2 a2 a,—2 a,— 2" a)b, (34)

Grouping elements at powers of two, we obtain the following expressions for the coeffi-
cients ¢;, that arise when multiplying two elements of the field

o = azby +asb, + ab, +agby (35)
o = dpby + ayby + agh, — a;by (36)
ey = a by +agh, —ab, —aby (37)
¢, = aghy —azby — ayb, — ay by (38)

It can be seen that in Formulas ( )-( ) the coeflicients a; are rearranged cyclically with a
sign change, which corresponds to the specifics of the field under consideration. We also
emphasize that the coefficients ; are not necessarily equal to +1, i.e., they are not coefficients
in the representation of the form (26). These are the weights with which the powers of two are
added when calculating the result of the product.

The algorithm based on Formulas ( )-( ) can be implemented quite simply schemati-
cally, moreover, it admits an obvious generalization to any fields of GF{2"+1). However, the
fact that the coefficients ¢; are not coefficients in binary alternating representation makes us
consider further simplifying the circuit implementation of multipliers in fields of the type
under consideration.

Algorithmic basis of digital logarithm in the GR2"+1) field

A significant simplification of the circuit implementation of the multiplier in the field under
consideration can be achieved by using the digital logarithm operation, as noted above,

In relation to the field GF(17) under consideration, the operation of digital logarithm is
reduced to the operation of circuit identification of primitive elements. As can be seen from

, multiplication by a primitive element leads to the fact that the number becomes equal

to the power of two, which is easily identified schematically when using binary representation.

To identify primitive elements, you can use the following technique, which follows from
the property of a cyclic permutation with a change in the sign of the element being rearranged.
In the presents examples of continuation of the sequence of characters a;, appearing in
the alternating binary representation of the elements of the field GF(17). Each of these
sequences may include one additional element -as, as illustrated in

Table 5. Example of continuation of a sequence of binary characters with alternating representation of elements

of the GF(17) field.

as [ 'y ag —d;
1 -1 -1 1 -1
1 -1 -1 1 1
1 -1 -1 1 1
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Table 6. Values of g; values and their sums for elements of the GF(17) field that are not primitive.

gz = U2 §2= Q2 q1 = Q_l,o 4o = Q_o,s Lq:
! ¢ b} ¢ 1
[t} ¢ [t} 1 1
[t} ¢ 1 ¢ 1
[t} 1 [t} o !
1 ¢ o} ¢ 1
0 ¢ 0 1 1
0 ¢ 1 ¢ 1
0 1 0 Y 1
1 ¢ 0 ¢ 1

Let’s form the function @Q;;_;, which provides counting the number of sign variables in

sequences similar to those presented in . This function is defined as follows
l.aa, , = —1
L A
4=Qy.= (39)
. {0?“;“)' 1=+l
The values of g; values for non—primitive field elements are shown in , and for prim-

itive elements—in

The table data show that the sums g, are invariants for the set of primitive elements of the
tield GF(17) (all of them, when using the alternating binary representation of the elements of
this field, are formed by a cyclic permutation with a sign change), as well as for the set of ele-
mennts that are not primitive. In one case, the invariant is 1, in the other- 3.

This approach, based on the calculation of invariants, can easily be generalized to other
fields of GF(2"+1), which directly follows from the fact that multiplication by two reduces to a
cyclic permutation with a sign change. In particular, the nonzero elements of the field GI{(257)
decompose into 16 subsets, each of which is formed by cyclic permutations of the type under
consideration. This, in turn, follows from the fact that in the field GF(257) there is

2% = —1(257) (40)

Conclusions

Thus, along with a direct algorithm for multiplying numbers in alternating binary representa-
tion, given by Formulas ( )-( ), we can propose the following algorithm for performing the
multiplication operation for fields GF(2"+1), in particular, for the field GF(17).

Table 7. Values of g; values and their sums for primitive elements of the GF(17) field.

3= Qs 4= Q21 q1=Que do= Qo3 Laq;
1 ¢ 1 1 3
0 1 1 1 3
1 1 1 ¢ 3
1 1 0 1 3
1 ¢ 1 1 3
0 1 1 1 3
1 1 1 ¢ 3
1 1 0 1 3
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. The multiplied numbers are translated into binary alternating representation. This is pro-

vided by direct recalculation using the formula A = 24,+1, where A, is the original number,
followed by the representation of the resulting odd number in the form (26).

. Using binary alternating coeflicients of the number A = 2A4,+1, the invariants Xg; are calcu-

lated, which determine the division of the field into subsets, each of which corresponds to
multiplication by a power of two.

. Multiplication is performed by the element corresponding to the invariant Xg;. As a result,

an element is formed that represents the power of two (taking into account the sign). This
degree sets the digital logarithm of the field element in question.

. The exponents are added modulo the power of two, which schematically corresponds to the

usual operation of adding binary numbers with dropping the highest digit.

. The reverse transition from the exponent to the non-zero element of the field GF(2"+1) is

carried out.

In general, the paper shows that the use of alternating binary representation for elements of

fields GF(2"+1) allows them to realize all the same advantages that occur when working with
Galois fields corresponding to Mersenne primes.

The most important type of fields of this type is the GF(257) field, since it corresponds to

the number of levels of the digitized signal, which is often used in practice. For example, the

most commonly used analog-to-digital converters assume the use of 256 levels.
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The specifics of the Galois field
GF(257) and its use for digital signal
processing

Akhat Bakirov', Dinara Matrassulova?, Yelizaveta Vitulyova'™, Dina Shaltykova? &
Ibragim Suleimenaov?

An algorithm of digital logarithm calculation for the Galois field GF(257) is proposed. It is shown

that this field is coupled with one of the most important existing standards that uses a digital
representation of the signal through 256 levels. It is shown that for this case it is advisable to use the
specifics of quasi-Mersenne prime numbers, representable in the form p = 2" + 1, which includes the
number 257. For fields GF (2" + 1), an alternating encoding can be used, in which non-zero elements of
the field are displayed through binary characters corresponding to the numbers +1 and - 1. In such an
encoding, multiplying a field element by 2 is reduced to a quasi-cyclic permutation of binary symbols
(the permuted symbol changes sign). Proposed approach makes it possible to significantly simplify
the design of computing devices for calculation of digital logarithm and multiplication of numbers
modulo 257. A concrete scheme of a device for digital logarithm calculation in this field is presented.
Itis also shown that this circuit can be equipped with a universal adder modulo an arbitrary number,
which makes it possible to implement any operations in the field under consideration. It is shown that
proposed digital algorithm can also be used to reduce 256-valued logic operations to algebraic form.
Itis shown thatthe proposed approach is of significant interest for the development of UAV on-board
computers operating as part of a group.

Keywords Galois fields, Mersenne numbers, Quasi-cyclic permutations, Digital logarithm, Modulo
multiplication algorithm, UAV flight computers

Binary and non-binary Galois fields are increasingly used in information technology. Mostly such algebraic
structures are used to develop information security algorithms'~, i.e. in the area that obviously operates with
alphanumeric symbols that can be put in correspondence with the elements of one or another discrete set studied
by abstract algebra. Very significant results have been obtained in this area, using, among other things, Fourier-
Galois transformations®. Analysis of current literature in this area, in particular, such reports as”?, allows us
to assert that coding theory (including the theory of error-correction codes'®) has already in many ways become
a part of applied abstract algebra. For developing information security algorithms, other nontrivial algebraic
structures are used, in particular, finite algebraic rings''-"%,

It is appropriate to emphasize that the needs of practice, in particular those related to the calculation of
Fourier-Galois transforms !, force one to turn to the use of non-trivial code systems* too.

However, the use of finite algebraic structures is of interest not only from the point of view of cryptography
(more widely—information security systems). In particular, the creation of groups of unmanned aerial vehicles
(UAVs) operating as a group and controlled by a single operator is currently attracting more and more attention
of researchers'®!”. Creating algorithms for controlling such groups is a non-trivial task!®2°, Any such algorithms
are based on the fact that the onboard computer of an individual UAV processes not only the commands received
from the operator, but also the information received from the other UAVs in the group. All this information must
be converted into executable commands to be fed to the actuating units of a particular UAV. It is significant that
fuzzy logic is nowadays increasingly used to solve such a problem?'*?, The number of variables corresponding
to such logic is known to be finite, which was clearly demonstrated in?® using the example of the rhumb rose.
Moreover, as shown in the cited work, the values of fuzzy logic variables can be put in correspondence with
the values of variables of multivalued logic, and such a comparison for practical purposes does not necessarily
have to be mutually unambiguous. In particular, "empty”’ commands can be introduced into consideration. This

LAl-Farabi Kazakh National University, Almaty, Kazakhstan. *National Engineering Academy of the Republic of
Kazakhstan, Almaty, Kazakhstan. ®email: lizavita@list.ru
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allows us to use the most convenient variants of multivalued logics, in particular, those of them, the set of values
of variables of which can be mutually unambiguously matched to the set of elements of the Galois field GF (p™).

Moreover, any information exchanged between the elements of the UAV group, both among themselves and
with the operator, is usually represented in a digital form, and one that meets existing standards. One of the most
common is the 256-signal level standard. Therefore, even if we do not consider the application of fuzzy logic to
the control of UAV groups, this issue can be solved in terms of multi-valued logic, and the relevant issue is the
choice of logic that meets the existing standards.

This example allows us to take a somewhat broader view at the applied use of abstract algebra tools™. Namely,
in the natural science tradition, physical phenomena are, as a rule, described by functions that take real or com-
plex values. However, as emphasized in**?%, this is nothing more than a matter of agreement. A function that
takes values in a particular set is nothing more than a model of a real process, for example, a signal®***. From a
general methodological point of view, there is a mapping of a real physical process (for example, signal genera-
tion) onto a certain mathematical object, the choice of which is ultimately determined by issues of convenience
and efficiency of use.

In particular, for a digital signal varying in a finite range of amplitudes, a function that takes values in Galois
fields**% or algebraic rings®**” can be used as a signal model. The number of discrete levels that fit into a finite
range of amplitudes is also finite. Consequently, a function that takes values in any algebraic structure with a
finite number of elements can be used for description of processes of this kind.

This fully correlates with the above statement: for a number of applications (including the development of
algorithms for controlling groups of UAVs) it is acceptable to operate with elements of finite algebraic structures.

We emphasize that the elements of the Galois field can be assigned to the values of a multivalued logic vari-
able. Moreover, as shown in?*?, it is possible to reduce any logical operations to algebraic form. We emphasize
that traditionally functions that depend on a logical variable are presented in tabular form?*?". The results
obtained in?**® allow one to convert such tables to explicit algebraic expressions. Such expressions can be used,
for example, as a basis for on-board UAV calculators acting as part of a group due to the finite number of execut-
able commands and the possibility of representing the information on the basis of which they are generated, in
terms of fuzzy logic.

One of the most commonly used standards divided the amplitude range into 256 levels®!. This standard cor-
responds to the Galois field GF (2%}, i.e. each of the signal levels can be associated with an element of this field.

Consequently, it is permissible to consider the problem of reducing calculations corresponding to such a
number of discrete levels to calculations in Galois field. It is appropriate to note that there are reports devoted to
the development of electronic circuits that perform modulo addition and multiplication operations in current
literature, for example,”*. Such operations correspond to operations in the simplest Galois fields GF (p), where
pis a prime number. The proposed formulation of the problem fully meets this trend.

From the point of view of applied purposes, different Galois fields have different specifics**, i.e. it is not
always justified to consider the question of the maximum generalization of the results obtained using a specific
Galois field. In particular, the field GF (24 + 1), studied in%, is conjugate to the field GF (2%, which makes it pos-
sible to bring into explicit form any operations for the important special case of 16-valued logic. The fact that the
number 17 is one of the quasi-Mersen primes, representable in the form p = 2% + 1, is used in®.

Moreover, from the point of view of solving the problem of controlling groups of UAVs (and similar ones), it is
acceptable to raise the question of creating universal calculators oriented to the use of a sufficiently large number
of commands. The indicator corresponding to 256 levels, obviously overlaps the existing needs (especially if we
take into account that the UAV course correction can correspond to a discrete thumb rose”). Consequently, if
we focus on this existing standard, it is possible in the future to raise the question of creating universal onboard
calculators, allowing the use of different variants of fuzzy logic.

The number of levels equal to 256 is associated with one of the quasi-Mersenne numbers (257), which makes
it possible to significantly simplify any computational procedures associated with carrying out calculations in
the field GF(2%) due to transition to calculations in the conjugate Galois field GF(257).

This paper presents specific algorithms that can significantly simplify any calculations in the field GF(257),
and also presents specific electronic circuits that prove the effectiveness of the proposed algorithms. It is impor-
tant that these algorithms, among other things, make it possible to implement calculations in the field under
consideration based on a standard element base corresponding to binary logic.

The basis of these algorithms is, in particular, the operation of digital logarithm. This issue is also quite
actively discussed in the literature” %, and there are examples when this problem is considered in relation to a
specific Galois field?.

In this work, it is proved that the specificity of the GF(257) field makes it possible to implement a digital
logarithm algorithm, which can be used to create electronic circuits, including those that perform operations in
256-valuedlogic, ie. one of the most important technical standards.

34,35

Methods: comparison of Mersen and quasi-Mersen numbers using for digital signal
processing
The method used in this report is based on the use of prime numbers, which can be called quasi-Mersen numbers.
To malke the comparison adequate, let us briefly consider the basic properties of Mersenne numbers, which
currently find concrete practical applications®b4.
Such numbers can be represented in the form

p=2"-1 (1)
where n—are specifically chosen integers, the first of which are 2,3, 5, and 7.

Scientific Reports |

(2024) 14:15376 | https://doi.orgf10.1038/541598-024-66332-2 nature portfolio



www.nature.com/scientificreports/

In relation to digital signal processing, the following property of Mersenne numbers is of interest, which is
convenient to consider using the example of the field GF(127) whose characteristic is the Mersenne number
withn = 7.

In binary form, any of the elements of the GF(127) field can be represented as

A = agas ... aag. (2)

where a; = 0,1
Multiplying a given number by 2 modulo 127 is reduced to a cyclic permutation of symbols

2agds ... 4d100 = ds . ..d1a804d¢ (3)
Formula (3) is a consequence of the next relation
1111111 = 0000000{127) (4

Property (3), in particular, makes it possible to significantly simplify the algorithm for multiplying numbers
modulo 127 by each other.

A similar algorithm was proposed for particular case of quasi-Mersen numbers in®.

Such numbers can be represented in the form

p=2"+4+1 (5)

The algorithm®® is based on the following properties of quasi-Mersen numbers, which can be conveniently
considered using the field GF({17) as an example. This field can be considered as a set of elements

GF(17) = {~8,~7,...,0,...7,8} (6)
since the choice of representing elements is arbitrary up to the modulo comparison operation, for example,
—8=9(17).

All non-zero elements of the field under consideration satisfy the relation

5 _1=0 (7)

From this relation, in particular, it follows that any element of the field under consideration can be repre-

sented in the form
e (1) (P () )

«
where s; = 0; 1, and the notation 3/1 denotes an element having next properties:

Zk_ 1

2t
[ik/q :1;[2«%} £1 (9)
Specifically, for the field GF(17) such elements are equal

(7)1

(%L:“;*“ (11)
(%)3 = 2,8, -8 —2 (12)

(k“ﬁ) =3,567 ~7; 6 5 3 (13)
4

The possibility of using representation (8) follows from the general theory of Galois fields. Indeed, all powers
of any primitive element y of the field under consideration from 0 to 15 are different. At the same time, all these
powers are roots of Eq. (5), i.e. they exhaust the elements of the field.

Let us consider the degree ¥™, and represent the number m, where 0 < m < 15 in binary form

W= Wiy i3y (14)
where m; are binary characters, Le.
m=2" my+2> my+2L my+2° (15)
Therefore, the degree ¥™ can be represented in the form
. il m m
PR M R o (16)

This expression may be reduced to the form (8) by using relations (10)-(13).
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Starting from an expression of the form (8), one can propose an alternating encoding®, which is also conveni-
ent to consider using the example of the GF(17) field.
Let us consider an expression for non-zero elements of GF(17) field

A=2 a4+ m+2' a1 +2% a4 (17)

where a; = 41

The result of calculations using formula (17) will certainly give an odd number. There are 2* combinations of
the form (17), with the maximum number being A, = 15and, accordingly, Apmpm = —15.

One can see, that the number of combinations of the form (17) in the case under consideration coincides with
the number of non-zero elements of the field GF(17). Thus, after modulo reduction, the numbers represented in
the form (17) exhaust the set of non-zero elements of the field GF(17). Consequently, this representation can be
used along with any other, especially if we take into account that “representatives” of the residue classes of the
ring of integers modulo a prime number can be chosen in an arbitrary way.

A representation of the form (17), in which a; = £1has a property similar to the property possessed by
Mersenne prime numbers (3). Namely, multiplying the number written in representation (15) by 2 can be rep-
resented as the following operation

2. A=2 g +2% a1 +2 ap—2" a3 (18)

'This follows from the fact that in the field under consideration 2* = —1(17).
Consequently, the operation of multiplication by 2 in alternating binary representation of a number is reduced
to a cyclic rearrangement of binary elements with a change in the sign of the last element. We have

2.A=2. @maiaoaz = aza1a0(—as) (19)

It can be seen that this property is indeed similar to the property of the fields formed using Mersenne num-
bers (3).

This property gives possibility to propose simple algorithm of digital logarithm operation for very important
particular case GF(257) too.

Results and discussion
Computational invariants for elements of field GF(257)
Calculation of elements s; in representation (6) and similar ones corresponds to digital logarithm operation.

With the help of algorithms (and/or digital devices) that perform such an operation, the multiplication opera-
tion can obviously be reduced to an addition operation.

Inthis section it is proved that the set of non-zero elements ofthe field GF(257) can be divided into subsets,
and this division allows one to significantly simplify digital logarithm operation. Looking ahead somewhat, we
note that proposed algorithms also make it possible to significantly simplify the electronic circuits that perform
this operation.

The proposed algorithm is based on quantities that can be called computational invariants. The rationale for
their use is given in this section.

Let us start from the identity

561 = (41916, (20)

The right side of relation (20) emphasizes the following fact. To represent an arbitrary non-zero element of
the field GF(257) using relation (17), 8 bits are needed. Taking into account the change of sign of the last ele-
ment when multiplying by 2 (16), there are 16 elements that differ from each other by the factor Zk, k=0,1,...,15
in this field.

Therefore, an arbitrary non-zero element of a given field can be represented in the form
o
x = ( %) 2k (21)

whereo =0,1,...,15,k=0,1,...,15.

We emphasize that the root %2 should be chosen as equal to a primitive element, i.e. the different degrees of
the root must give all elements of the field GF{257).

Similarly, all non-zero elements of the field GF(17) can be expressed by a formula similar to (24), obtained in:

x=(v2) Tk (22)

The adequacy of representations (21) can also be proven as follows. Let us consider an arbitrary degree of a
primitive element 22
w
. — ( 1§ 2) (23)

wherew = 0,1,...,256.
Let’s represent the number w in standard binary encoding
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w=2"wr+ 2%ws + -+ 2% (24)

Let’s substitute expression (24) into formula (23). We have
W W
2= ()7 @) (92)" (92)" @)

Note that formula (25) is equally valid for representing the field elements GF(257) both in the form — 128,
-127,...,0,...,127,128 and in the form 0,..., 255, 256. These representations differ only by specific “representa-
tives” of the corresponding classes of residues are used as /2 (Tables 1 and 2).

There are exactly 16 primitive elements */2 in the field GF(257). They are listed in Table 1. In Table 2 only 9
elements are presented, since in the case of alternating representation the elements of 52 fall into two groups
that differ in sign. This is emphasized by the 9th line in Table 2.

Thus, formula (25) shows that, up to a permutation of the indicated type, the alternating binary representation
allows us to reduce all elements of the field GF(257) to sixteen elements of the form

Wy

= ()" (8" ()

The remaining elements of the GF(257) field can be obtained from these sixteen elements by cyclic permuta-
tion with a change in the sign of the symbols in the alternating binary representation.

Further, representation the elements of the field GF(257) in an alternating binary encoding allows one to
form function Q; 1.

Laja;y =—1
=) = > dii—1
4= Qjj-1= { 0,aa1 = +1 2z

vi | |9 | |(9B)°

27 215 | 222 | 197

41 139 46 60

54 89 | 211 | 60

71 158 | 35 [ 197

82 42 | 222 | 197

93 168 | 211 60

108 99 | 35 | 197

115 118 | 46 | 60

142 118 46 60

149 99 35 | 197

164 168 | 211 60

175 42 | 222 | 197

186 158 | 35 [ 197

203 89 | 211 60

216 139 | 46 | 60

(ST I S I S B SR I S B A S I o I S A e e B o o R e

230|215 | 222 | 197

Table 1. Elements /2 of the field GF(257) in terms of positive numbers,

i |m ¢ | ()"
& -42 | =35 |-0o0 |2
41 -118 46 60 |2
54 89 | -46 60 |2
71 -99 35 |-a60 |2
82 42 |-35 |-60 |2
93 -89 | -46 60 |2
108 9 35 |-60 (2
115 118 46 60 |2
=115 118 46 60 |2

Table 2. Elements /2 of the GF(257) field in representation using both positive and negative numbers.
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This function provides a count of the number of sign changes in code sequences corresponding to the alternat-
ing representation of an element of the field. In the case under consideration, this function contains 8 clock cycles.

Otherwise, we can assume that this function “takes values” at the vertices of the octagon, as shown in Fig. 1.
Multiplication by powers of two in this geometric representation corresponds to the rotation of the octagon
around the axis of symmetry by an angle multiple of Z.

Consequently, values (27) actually correspond to well-defined geometric constructions (Fig. 1). Due to the
fact that cyclic permutations with a change in sign are used, the number of non-zero values ¢; of function (27)
can only be odd.

This geometric interpretation is illustrated by Table 3. It shows that for each specific number presented in an
alternating encoding, there are certain invariants that correspond to the situations presented in Fig. 1.

This table presents examples of g; values for different elements of the field GF(257) in alternating binary encod-
ing, as well as invariants corresponding to the number of sign changes in the sequence (last column of Table 3).

It can be seen that the examples presented in this table clearly correlate with the geometric construction of
Fig. 1. Namely, the number of sign changes in the sequences under consideration is odd, and, therefore, can be
equal to 1, 3,5 and 7. The last two cases (the invariants are 5 and 7) are reduced to the first two of those indicated
by the inversion 0 <> 1.

Consequently, only the cases Y g; = 1and 3, g; = 3 can be kept in consideration. They correspond to pos-
sible placements of one and three elements on the vertices of the octagon, as shown in Fig. 1, and such placement
is specified up to rotation by an angle Z, i.e. placements that differ in rotation by such an angle are considered
identical.

The proposed invariants make it possible to significantly simplify the operation of digital logarithm and
propose a specific electronic circuit that implements this operation based on standard logic elements. It is dis-
cussed in the next section.

The operation of digital logarithm and the electronic circuit that implements it
As follows from the materials in the previous section, the problem of calculation of digital logarithm in the field
GF(257)is divided into two ones.

OO0
SB0G

(@]
—

(¢
—

7

g)

Figure 1. Geometric interpretation of the elements given by formula (27); black circles are vertices
corresponding to values equal to 1 in formula (27), black circles with an additional black circle correspond to
the case when vertices corresponding to such values are separated by one vertex.
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i G [ [95 (% 9B |2 | [% [Zw
-255 V] 1] ] ] ] 1] ] 1 1
-253 o (0 (0 |0 |0 |O 1 (0 1
-251 o (0 |0 |0 |0 1 1 1 (3
—249 1] V] J ] 1] 1 1] ] 1
—247 1] V] 1] ] 1 1 1] 1 3
-245 |0 o [0 [0 |1 1 1 0 |3
-243 0 o [0 [0 |1 o |1 1 (3
-241 ] 1] 1] ] 1 1] 1] ] 1
-239 ] 1] 1] 1 1 1] 1] 1 3
-237 0 o (0 1 1 0 1 o |3
-235 0 o (0 |1 1 1 1 1 5
-233 ] ] 1] 1 1 1 1] 1] 3
-231 ] ] (1] 1 1] 1 1] 1 3
-229 1] 1] 1] 1 1] 1 1 1] 3
=227 0 |90 o |1 [ ] 1 1 3
-225 ] ] 1] 1 V] ] ] V] 1
-223 ] ] 1 1 U] ] ] 1 3
-221 0 |0 1 1 |0 0 1 0 |3
-219 0 |0 1 1 |0 1 1 1 5
=217 1] ] 1 1 1] 1 J o |3
-215 1] ] 1 1 1 1 J 1 5
-213 0 |0 1 1 1 1 1 0 |5
-1 0 |0 1 1 1 [ 1 1 5
- 209 1] 1] 1 1 1 1] ] ] 3
-207 1] 1] 1 ] 1 1] ] 1 3

Table 3. Invariants of sequences corresponding to alternating encoding (examples).

The first one is equivalent to determination of the rotation angle of the octagon shown in Fig, 1, which actually
corresponds to the definition of a power of two (when multiplied modulo 257) in representation (25).

The second one corresponds to the identification of one of the configurations presented in Fig. 1. Having
determined such a circuit configuration, one can automatically determine one of the elements represented by
formula (26).

Let’s consider the block diagram of a device for calculation of digital logarithm in accordance with the algo-
rithm, which follows from the above. Lets consider second-order invariants, reflecting the relative position of
units at the vertices of the octagon (Fig. 1). Such invariants are, in particular, the sums Us;

Uy =3 g (28)
of quantities ¢ i($1,2) given by the formulas

4" = qugia (29)

4 = 12 (30)

The identification of seven cases, except for the trivial one (Fig. la) is of interest. In this trivial case, the digit
number directly corresponds to the non-zero value g; (27).

It can be seen that the invariant Uy, is equal to 2 for the configuration shown in Fig. 1b only. Consequently,
calculation of this invariant automatically gives identification of this case. In this case, the angle of rotation of
the hexagon is fixed by function (29), which in this case takes only one non-zero value.

This sum Ug, also takes a non-zero value equal to 1 for the cases of Fig. 1c-f This corresponds to the fact that
there are only two nodes in the sequence located in close proximity to each other. This invariant is equal to zero
for the cases of Fig. 1g and h. Consequently, the calculation of the indicated invariant allows one to identify the
case corresponded to Fig. 1b and divide the remaining options into two subsets.

Calculation of the invariant Us, automatically selects two cases from the considered set (Fig. 1d and e). In
these diagrams, there are no nodes separated from each other by only one empty vertex. Additionally, the cal-
culation of this invariant uniquely identifies the case of Fig. 1g, for which this invariant is equal to 2. For clarity,
filled vertices, separated from each other by two turns at an angle of /4, are highlighted with additional circles.

Thus, to complete the digital logarithm operation for the field under consideration, all that remains is to
ensure the difference between the cases of Fig. 1c and f, as well as between the cases of Fig. 1d and e. This
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difference is identified by the phase shift between functions (29) and (30), which does not depend on the pres-
ence of a factor equal to a power of 2 (which is equivalent to rotations of the octagons under consideration).

Specifically, this phase shift can be determined, for example, through the calculation of invariants built on
the functions

4™ = qi2qigi (31)

4™ = qi3qigi (32)

To use such functions, it is already important to take into account the direction; specifically, it is assumed
that the direction in Fig. 1 is counted clockwise.

It can be seen that function (31) can take a non-zero value only for the case of Fig. 1c, and function (32) is
only for (tshe case of Fig. 1d. Therefore, to identify the above cases, it is enough to count the invariants 3 g,
and > g™

Asa ;esult, we can propose the following block diagram of device for digital logarithm (Fig. 2).

A device built on this circuit works as follows.

The original binary signals (their number is 16) are sent to the converter (1), which converts them to the
familiar encoding. Due to this, in particular, the set of signals generated at the output (1) can be considered cyclic.

From all 16 outputs of the converter, signals are fed to the adder (2), which counts the number of units. A
logical one is formed at the output A; of the adder (2) if the number of ones is 1, i.e. the case corresponding to
Fig. la is realized. In this case, the digital logarithm of the number is exactly equal to the number of the converter
output (1) on which a signal other than 0 is generated.

A logical one is formed at the output A, of the adder (2) if the number of ones is 3, i.e. the cases correspond-
ing to Fig. 1c-h are realized. If the number of ones is 5, then a logical one is formed at output Az, and if it is 7,
at output A4.

Signals from outputs A3 and A4 are fed to the OR element (4). This signal is used to control the inverters
(5;), which perform the inversion operation 0 <> 1, provided that the number of ones is 5 or 7. The inverters
(5y) perform the addition operation modulo 2, i.e. they are EXCLUSIVE OR elements. The second inputs of the
inverters (5;) are supplied with signals from the outputs of the converter (1).

As a result, a set of signals is formed at the outputs of the inverters (5;), which contain either one non-zero
signal or three such signals.

This set of signals is supplied to the first stage of the first digital logarithm block, consisting of elements (6,)
and (7,), as well as an OR logic element (8).

Elements (6,) perform alogical OR operation. One of the inputs of each of these elements is supplied with a
signal from the output of the element (8), and the second is supplied with a signal from the output of the inverter
(5..1). Consequently, the signal at the output of each of the elements (6,) will be equal to 1 if a logical unit is formed
at the output A or output A4 of the adder (2), and equal to the value of the (i — 1) st signal in the opposite case.

The signal from the output of each of the elements (6,)) is fed to one of the inputs of the element (7,), which
performs a logical AND operation. The second input of each of these elements is fed directly from the output
of the inverter (5)).

As a result, the block under consideration calculates correspondent invariant if the number of units in the
set of signals at the output of the converter (1) was equal to 3 or 5 and leaves the signals generated by the set of
inverters (5;) unchanged if the specified number was 1 or 7.
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Figure 2. Block diagram of a device for digital logarithm in the field GF(257).
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As follows from Fig. 1, this cascade already identifies sequences corresponding to Fig. 1a, as well as Fig. 1b-f
in the sense that for these cases, in the set of signals generated at the outputs of elements (7,), only one logical
unit is formed, which uniquely identifies the digital logarithm of the corresponding element of the Galois field.

To identify the remaining cases, an adder (9) is used, which counts the number of ones at the outputs of the
elements (7). If this number is 1, then the digital logarithm operation should be considered complete. If this
number is 0, then the situations corresponding to Fig. 1g or Fig. 1h. In this case, the result of digital logarithm is
generated by the second digital logarithm block, which is discussed below. Identification signals are generated
at the outputs By, By and B; of the adder (9). A logical unit is formed at these outputs if the sum of logical units
at the outputs of elements (7)) is equal to 0, 1 and 2, respectively.

To take into account the situation corresponding to Fig. 1b, the second stage of the first digital logarithm block
is used, which is designed similarly to the first. It consists of elements (10;) and (11,). Elements (10,) perform a
logical OR operation, and elements (11;) perform an AND operation. The first inputs of each of the elements
(10y) are supplied with signals from the outputs of elements (7,_,), and their second inputs are supplied with a
signal from output B,, i.e. in the case when there is a logical unit at this output, then elements (10,) do not affect
the operation of the system.

If a logical zero is formed at the specified input, then the second stage de facto cyclically performs the
operation

4 = g9 (22

This operation in the case corresponding to Fig. 1b, leads to the appearance of a logical unit at only one of
the outputs of the elements (11,), the outputs of which are connected to the inputs of the decision device (12).

Thus, the considered part of the circuit provides unambiguous identification of the digital logarithm for cases
corresponding to Fig. la-f.

Cases Fig. 1g,h correspond to a logical unit generated at the output B, of the adder 9. This signal blocks the
operation of the first digital differentiation block and transmits it to the second, arranged in a similar way, with
the difference that identification is carried out through the use of functions (29) and (30).

Thus, we have shown that the use of an alternating binary representation for elements of the GF(257) field
allow one to realize all the same advantages that occur when Galois fields corresponding to prime Mersenne
numbers are used.

The most important type of field of this type is the GF(257), since it corresponds to the number of levels of
the digitized signal, which is often used in practice. For example, the most commonly used analog-to-digital
converters involve the use of exactly 256 levels.

The proposed algorithm allows one to reduce the multiplication operation to the addition operation.

As shown, in particular, in??, any operations in the Galois field, given, for example, by a truth table, can be
reduced to the operations of multiplication and addition. The electronic circuit providing the multiplication
operation has been presented above. The scheme of a universal adder on the modulus of an arbitrary integer was
presented in our work*® on the basis of modernization of the adder scheme, for which we received a patent of
Kazakhstan®. Thus, the scheme presented above allows to realize, for example, on-board calculators for UAVs
operating as part of a group, as well as to solve similar problems.

Probable generalization and applications of proposed approach
Let us consider the possibilities for generalizing the proposed approach, although at this stage of research this
issue is rather of academic interest. In particular, the next quasi-Mersenne number after 257 is the number
2%+ 1=65,537.

For any Galois field GF(2* 4 1) we have

2l =—1(2"+1) (34)
This follows from the fact that
2+ 1=0(2"+1) (35)

Further, all non-zero elements of the field GF(2” + 1) are roots of the equation

Y (36)
which directly follows from the theory of finite algebraic fields: the number of non-zero elements of the field is
one less than their total number, therefore all elements of the field satisfy an equation of degree 27,

In accordance with the method used above, it is convenient to represent this equation as follows

4"

M n
xzflz(xﬂ) — LA (37)

where N is the number of bits in the binary alternating representation of the field GF (2" + 1).
Formula (37) takes into account the following fact. # bits are required for representation of non-zero elements
of the field under consideration in alternating encoding,

N=log(2")=n (38)
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Therefore, there are 2n field elements, differing from each other by multiplication by a power of 2 in repre-
sentation under consideration: in order for a quasi-cyclic permutation to lead to the original result, the field
element must be multiplied by 22” modulo 2 4 1. Consequently, the set of non-zero elements of the field under
consideration is divided into 2n subsets, each of which contains % elements.

The values of these quantities for the first 4 quasi-Mersenne numbers are presented in Table 4.

It can be seen that for Galois fields corresponding to the first three quasi-Mersenne numbers, it certainly
malkes sense to identify subsets whose elements differ by multiplication by a power of 2. Already for the fourth
quasi-Mersenne number, the advisability of using this approach is, at a minimum, not obvious. Elements similar
to those shown in Fig. 1 becomes not 8, but 1024.

In general, Table 4 shows that the proposed approach is indeed appropriate to apply to specific Galois fields
GF(17) and GF(257), which are of practical interest. Taking into account the results obtained in%, the field
GF(5) may also be of interest as conjugate (in the sense of digital logarithm) with the field GF(2%) to simplify
the operations of four-valued logic.

Let us show that the results obtained are indeed of interest from the point of view of combining methods of
digital signal processing and multi-valued logic for the case when the signal is reduced to 256 discrete levels.

As shown in®*, to reduce the operations of multivalued logic to algebraic ones, it is advisable to use algebraic
analogue of the 6-function

Bilx) =1—(x—xy (39)

where x is the current variable that takes values in the Galois field GF (p”), x;1s the i-th element of the field in
question.
This function has the following property

Six) = { g (40)

This property follows from the general theory of Galois fields, according to which, for an arbitrary element
of a Galois field containing p” elements xP"~1 = 1.

The use of algebraic analogue of the &-function allows, in particular, to reduce any operations of p™-logic
(logic, the number of values of a variable is equal to p”) to an explicit algebraic form?*?%. In relation to the logical
function of two variables and the Galois fields GF{(p), the corresponding expression has the form

ii=p—1

Flxy) = > flxuy)8ix)8() (41)

ij=0

where the values f(x;, ;) form a truth table (recall that the operations of multi-valued logic are currently speci-
fied through truth tables™).

Relation (41) clearly expresses the well-known fact: if the number of values of variables of multivalued logic
is equal to an integer power of a prime number, then logical operations can be reduced to calculations in the
conjugate Galois field.

If this condition is not met, then it is advisable to modify the algebraic analogue of the §-function using
the(digital )logarithm operation®. Moreover, it is also advisable to use this approach for the case of the field
GF(p® +1).

Specifically, we can compose an algebraic analogue of the §-function in the following form

Salmy=1— (6" — g™y (42)

In this formula, n and #; denote integers that correspond to the elements of the field GF (p™ ). It is assumed
that the values of the function itself 5,,, (n) belong to the field GF(p + 1), on which the mapping is performed;
—is a primitive element of the field GF (p” + 1), Le. such an element which degrees are exhausting all non-zero
elements of a given field.

This formula is convenient in that it allows you to get an expression for any operation carried out in terms
of 256-valued logic to algebraic ones.

Indeed, using (42), we have

ij=p—2

Qmm)y= > Qidy (87)8m(67) (43)

ij=0

n 2 (4 |8 16

2" 4+1 |5 |17 | 257 | 65537
2n 4 (8 l6 |32

2% /2n 1 (2 16 2048

Table 4. Values of quantities for the first 4 quasi-Mersenne numbers.
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where the quantities Q;; re associated with the elements of the truth table p”-valued logic in the following way
Qi = 8™ (44)

where n;; is the number corresponding to the element of the truth table with numbers i, j.

Formula (43) can be considered as a function of a pair of elements of the field GF (p"), corresponding to the
numbers n and m, and taking a value in the field GF (p” + 1). Formula (43) admits an obvious generalization to
a function of an arbitrary number of elements from the field GF(p™ ).

When substituting two arbitrary #ng and s into formula (43), due to (42), we have

Q(n()a mO) = Qng,mg (45)

Only one term in the formula (43) is non-zero.

It can be seen that in order to go back to the elements of the field GF(p”) when using formula (43), namely
the digital logarithm operation is required, which is proposed in this work for the important special case of
GF(2° 4 1).

Therefore, in the future it is possible to develop systems that directly operate in 256-valued logic.

Algorithms for controlling groups of unmanned vehicles as an area of application of the
obtained results

It was noted above that one of the practical applications of calculators operating with Galois fields of relatively
small size is the development of algorithms for controlling groups of UAVs, which, we emphasize again, are
currently attracting increasing interest of researchers'® ', In this section, we will try to demonstrate that for this
purpose, the digital differentiation operation realized thanks to the developed approach is essential.

The problem of group control of robots for various purposes has been considered in the literature for a
very long time!®*>*. This includes vehicles moving in a 3-D environment'”*”. Various methods are used for its
solution, in particular, those based on self-organization (Self-adaptive collective motion) of UAV groups®, on
machine learning®, on the use of graph theory®. There are known works that consider a modernized Olfati-
Saber algorithm using a virtual leader who is tracked by all UAV's forming a group®!. In*, algorithms built using
artificial intelligence combined with oS have been proposed to control a swarm of UAVs. On this basis, a self-
organizing ZigBee network is simulated in the cited work.

However, the decentralized robot control algorithm, which only takes into account information about the
positions of other system elements but not about the directions of their movement, have significant limitations®.
This difficulty is partially overcome in?’.

The control algorithms for a system of multiple UAVs considered in* also focus on distributed control cen-
tered on the so-called leader—follower consensus, which ensures that the entire swarm as a system whole moves
according to a predetermined trajectory. In*, where the drone swarm is considered from the perspective of
Networked Control Systems (NCS), the role of on-board computing systems for controlling the UAV swarm as
a systemic whole is emphasized. In*®, the problem of interfacing an artificial neural network with a UAY swarm
was solved, which, among other things, provides for maintaining a given distance between the elements of the
swarm, as well as to maintain the formation of the group.

Thus, the solution of the problem of controlling the UAV swarm as an integral system, as follows from the
above, is closely related to the solution of the problem of information processing by onboard computing systems.

It can also be seen that this problem can be solved by a variety of means. However, there is an essential nuance,
which, in particular, is demonstrated by the results of****. On the one hand, the amount of information received
by the individual elements of the UAV swarm should not be excessively large. On the other hand, it should be
sufficient, for example, to allow a particular element of the group to take an adequate position in the swarm
(especially when the swarm is ordered).

This returns to the issue of using fuzzy logic to control groups of UAV's, which was considered in particular
in2ha2

In?!, an algorithm based on fuzzy logic is proposed that can control a swarm of robots in order to maintain a
leader-follower formation without collisions with other agents in the swarm. Simulations have shown that the
swarm moves as a unit following the leader. In*, algorithms based on fuzzy logic were used to solve the problem
of fault tolerance of a group of several antonomous UAVs when they form a formation in the shape of a certain
geometric figure. The proposed approach based on fuzzy logic allows on-board control units of each UAV to
malke their own decision in a decentralized manner. Such decisions, including the possibility of changing the
configuration of the whole group.

Consequently, it is reasonable to raise the question of creating computational means for use in on-board
computing units of UAVs, which will be purposefully designed to perform operations of odd logic.

As noted above, such operations can be reduced to multi-valued logic operations as demonstrated, for exam-
ple, in*%. Further, it is possible to lead these operations to computations in Galois fields or finite algebraic rings?®.
It is this fact that determines the significance of using the operation of digital logarithmization, which can be
realized by quite simple means using the proposed approach.

We will show that when we pass to the operations of multivalued or fuzzy logic, the use of Galois fields has
very significant advantages compared to the situation when the operations of multivalued or fuzzy logic are
represented in tabulated form.

As emphasized, in particular, in*%, the development of methods for controlling groups of UAVs is inextricably
linked to the problems of providing secure communication channels. The main methods of such protection are
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based on the use of cryptography, but it is also relevant to provide protection at the physical level, for which
various approaches can be used, a review of which is given in the cited work. These include, for example,” .

Among them, one of the methods of physical protection of UAV onboard computers from third-party infor-
mation influences is the implementation of appropriate algorithms not at the level of programs executed by the
onboard computer, but at the level of electronic circuits. Any program remains unguaranteed from third-party
interference. On the contrary, if an algorithm is realized at the level of electronic circuitry, it is much more dif
ficult to transform it due to third-party informational influences.

It is this circumstance that determines the advantages of the approach based on the use of explicit algebraic
expressions expressing the operations of multivalued logic over their representation in tabular form. Indeed,
the use of the tabular form obviously implies the installation of this or that program on the on-board computer.
On the contrary, as it was shown in*®%® on concrete examples, the representation of operations of multivalued
logic in algebraic form allows to realize electronic circuits performing the corresponding computations without
using software.

Further, among multivalued logics, as it has been clearly shown, in particular, in**%%, a special place is occupied
by logics complementary to Galois fields GF (p” ). In this case, the reduction of operations of multivalued logics
to algebraic form turns out to be the simplest. In particular, the algebraic expression to which any operation of
such a multivalued logic is reduced contains only the operations of multiplication and addition. Even in the case
when the number of values of a multivalued logic variable is only one less than a prime number (or its degree),
we have to introduce additional algebraic operations into consideration (the operation of digital logarithmization
and its inverse’®). However, for the purposes of building algorithms for controlling groups of UAVs, this difficulty
is not fundamental, since it is always possible to introduce “empty” commands, supplementing the number of
commands to a convenient value p™

Consequently, the effectiveness of any UAV group control algorithms based on the use of fuzzy or multivalued
logic can be evaluated on the basis of their compliance with formulas similar to formula (43), which leads the
operations of multivalued logic of the considered type to an algebraic expression (and further—to the realization
in the form of a specific electronic circuit).

We emphasize that any algorithm of the considered type can be regarded as a special case of the above for-
mulas, since any operation of multivalued logic of the considered type is reduced to an expression of this type.

One cannot but see that from the point of view of realization in the form of an electronic circuit the most
resource-intensive operation is the operation of raising in degree, on which the algebraic delta-function (42)
is built.

The corresponding calculations can be simplified by using the digital logarithm operation, which is performed
by the circuit shown in Fig. 2. In this case, the operation of increasing in degree is reduced to a multiplication
operation. Moreover, due to the specificity of the considered field GF{257) the digital logarithm operation maps
non-zero elements of this field to elements of the field GF (2%), computations in which are realizable on the basis
of standard elements corresponding to binary logic.

There is every reason to believe that control algorithms of UAV groups in the foreseeable future will be ori-
ented to some standards similar to those currently developed in the field of digital signal processing, television,
etc. Proceeding from the fact that such algorithms, in the end, conveniently lead to calculations in Galois fields
(and their realization through electronic circuits), it is acceptable to assume that the expected standard will be
associated with a specific Galois field.

Taking into account that the most resource-intensive is the operation of raising to degree, it seems reasonable
to focus on those Galois fields which, on the one hand, have enough elements to cover the needs of practice,
and, on the other hand, allow to realize the operation of digital logarithmization by the simplest means possible.

It is this criterion that the field GF(257) considered in this paper satisfies, which is complementary (from the
point of view of performing the operation of digital logarithmization) to the field GF(2*), the computations in
which can be realized on the basis of standard elements.

It is also appropriate to note that the circuit providing digital logarithmization is also realizable on the basis
of type elements corresponding to binary logic. This, among other things, means that to realize the proposed
approach in practice it is possible to use microcircuits with programmable logic structure, which are being
actively developed at present™. Let us also note that there is a possibility to realize an adder on the modulus of an
integer with adjustable modulus value, which is also built on typical logic elements*. Thus, there is a possibility
for realization of on-board UAV calculators, completely based on calculations in Galois fields.

Note also that electronic circuits providing computations modulo integer (adders and multipliers) have
been actively developed recently®®¢L. Such devices, obviously, can be used also for computations in Galois fields.
Among others, there are known constructions of modulo 2" + 1 calculators that satisfy fields of the considered
type®s®. Investigations in the field of modular adders and multipliers are also reflected in the patent literature®*®.
The disadvantage of existing modulo adder schemes, however, remains their complexity. For example, the adder
scheme presented in cited reports can be replaced by a substantially simpler one*’. A similar conclusion is true
for the schemes proposed in®-%. The operation of digital logarithmization, based on the algorithm proposed in
this paper and realized in the form of the scheme of Fig. 2, allows to pass from the multiplication operation to
the addition operation, and the latter is performed on the basis of schemes corresponding to the usual binary
logic, as it was shown above.
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Conclusion

Thus, the use of finite algebraic structures is of interest not only for the purposes of cryptography, where the use
of algebraic fields or algebraic rings of large size is required. Of no less interest are problems in which the number
of elements of algebraic structures remains relatively small, which, in particular, is demonstrated by the example
of algorithms of UAV flight computers operating as part of a group.

The fact, as well as results obtained once again show that for applied using it is extremely important to take
into account the specifics of concrete Galois fields. In particular, this applies to the field GF(257), which cor-
responds to one of the quasi-Mersenne primes, i.e. numbers that can be represented in the form p = 2" 4 1.

This field is associated with the number 256, which corresponds to one of the most important standards used
in modern digital technologies.

For numbers corresponding to fields GF(2” 4 1), it is convenient to use an alternating encoding, in which
multiplication by the number 2 modulo p = 2% 4 1corresponds to a quasi-cyclic permutation of binary symbols,
Le. cycic permutation with a change in the sign of the permuted element.

This encoding allows one to implement a simple digital logarithm algorithm, which allows one to reduce the
multiplication operation to the addition operation, etc.

Specifically, for the GF{257) field, the digital logarithm operation is simplified due to the fact that the set of
non-zero elements of this field can be divided into 16 subsets, the elements of which differ from each otherbya
quasi-cyclic permutation of binary symbols. As a result, the operation of digital logarithm for a given field leads
to the identification of an element by belonging to one of these subsets.

It is important that the operation of digital logarithm in the field under consideration, which leads the multi-
plication operation to the addition operation, can also be implemented using relatively simple electronic circuits.
A corresponding example is presented in this work. This scheme, along with the scheme of adder modulo integer
with adjustable modulus value, proposed in*®, allows to realize any operations in the field GF(257), for example,
set through the truth table. In the future, this approach can be the basis, for example, for on-board UAV calcula-
tors acting as part of a group. Operations in Galois fields of relatively small size are also of interest in the future
for the development of new artificial intelligence systems, approaching the biological prototype by the principle
of operation, the functioning of which cannot be reduced to binary logic.
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Abstract: A method is proposed that reduces the computation of the reduced digital convolution
operation to a set of independent convolutions computed in Galois fields. The reduced digital
convolution is understood as a modified convolution operation whose result is a function taking
discrete values in the same discrete scale as the original functions. The method is based on the use
of partial convolutions, reduced to computing a modulo integer gy, which is the product of several
prime numbers: gy = p1p2 ... Pu. Itis shown that it is appropriate to use the expansion of the number
go, to g = pop1pz2 - .- Pn, where pyp is an additional prime numbet, to compute the reduced digital
convolution. This corresponds to the use of additional digits in the number system used to convert to
partial convolutions. The inverse procedure, i.e., reducing the result of calculations modulo g to the
result corresponding to calculations modulo gy, is provided by the formula that used only integers
proved in this paper. The possibilities of practical application of the obtained results are discussed.

Keywords: partial convolutions; algebraic rings; Galois fields; moving average method; convolution
theorem; computation modulo a prime number; idempotent elements

1. Introduction

The convolution operation is widely used in various sciences (optics [1,2], electron-
ics [3,4], etc.).

Digital convolution is the basis of convolutional neural networks (CNN), [5,6]. By
digital convolution, hereinafter, we will understand convolution, under the sign of which
are functions whose values correspond to a certain finite set of discrete quantities.

It is appropriate to emphasize that CNN [5,6] represent one of the most common
varieties of artificial neural networks (ANNs). The last wave of ANN development, demon-
strating the ability of CNN to show extraordinary results in the field of pattern classification,
is exactly associated with such networks [7]. An important area of application of convolu-
tional neural networks is pattern recognition and computer vision [8-10], natural language
text processing [11,12], speech recognition in noisy environments [13], etc.

As it was noted in [14,15], for digital signals, there is a wide enough space in the choice
of the function serving as a signal model. In particular, in these reports, it was emphasized
that functions taking values on the set of real or complex numbers actually represent some
mathematical object, allowing for the creation of a signal model. The choice of such an
object allowing for the creation of a signal model is ultimately a matter of agreement and
convenience [14,15].

In particular, if a signal corresponding to discrete levels lying within a finite range of
amplitudes is considered, then any function that can serve as a model of this signal must
actually represent a mapping of the current variable (time variable) onto some finite set.
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Both Galois fields [16,17] and finite algebraic rings [18] can be chosen as such a set. It should
be emphasized that such algebraic structures are nowadays more and more widely used in
information technologies [19-21], and this also applies to non-associative algebras [22].

In this paper we show that it is possible to bring the computation of digital convolu-
tions to computations in Galeis fields, in which, in particular, the numerical analog of the
classical convolution theorem [15] is valid.

This approach is of interest, in particular, because from the functions taking the values
within Galeis fields, it is admissible to pass to functions whose values correspond to
variables of multivalued (as well as fuzzy) logic [23,24].

Specific computations that are performed in Galeis fields or finite algebraic rings
can in many cases be reduced to computations modulo integers. At present, circuits of
various types allowing for the realization of such an operation are being developed quite
actively [25-28], with cryptography remaining the main field of application here. This
question is also reflected in the patent literature [29-32], where various variants of circuits
of multipliers and adders module some numbers have been proposed.

It is well known that computations modulo integers allows for operating indepen-
dently on the components of an integer representation [33-36].

Tt can also be used to represent a convolution operation as a set of partial convolutions,
each of which corresponds to a particular Galois field.

However, when using digital convolutions, there is a significant nuance. The sampling
scales of the original function and the function resulting from the convolution operator
are different.

To bring them into a mutually unambiguous correspondence, it is necessary to use an
operation that can be interpreted as a transition to the reduced digital convolution.

By the term “reduced digital convolution”, we mean the result of the convolution oper-
ation computation reduced to the same sampling scale as the criginal functions (functions
under the convolution sign).

Such operation can be implemented using the usual rounding operation for fractional
numbers; however, it is of interest to ensure that the calculation reduced digital convolution
in terms of operations modulo integers.

This approach provides a significant reduction in the amount of computation required
to bring the result of the convolution operation to the same discretization scale as the
discretization scale of the functions under its sign. When using conventional rounding,
decimal fractions have to be calculated. The proposed approach allows for operating
only with integers. Moreover, this approach allows for the realization of computations
directly in the form of electronic circuits, since nowadays, methods allowing for the real-
ization of computations in Galois fields directly in the form of electronic circuits are well
enough developed.

In addition, this approach creates prerequisites for the subsequent transition to the
use of functions taking values in variables of multivalued logic, etc.

The specific formulation of the problem solved in this paper is presented in Section 3.

The novelty of the work is as follows. We propose an approach based entirely on
modulo integer computations, which allows for the result of convolution operation to be
brought to the same discretization scale as the discretization scale of original functions.

The proposed approach, among other things, allows for bringing the digital convolu-
tion to calculations in Galois fields. Separately, this work for the first time substantiates
the method of choosing simple numbers that allow for carrying out this operation in the
simplest and most convenient way.

2. Related Works

This work lies in the general trend of modern research aimed at improving the ef-
ficiency of computational systems, including those focused on the use of convolutional
neural networks. References to specific works are given in Table 1.
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Table 1. Classification of related works.
Problem Being Discussed References
Fast arithmetic, Systems of Residual Classes [37-40]
Use of non-trivial algebraic structures in information technelogy [18,41,42]
Convolutional neural networks [5-13]
Use of Galois fields in information technology [43,44]
Using Galois fields in the aspect of multivalued logics [23,24]
Chips with reconfigurable logic [45-48]
Applications of computing based on chips with reconfigurable logic structure [49,50]

One of the important directions here is related to the use of KNS (modular arithmetic),
which can be used for neural networks too [37]. Such systems are closely related to fast
arithmetic [38,39], i.e., an area of research that has received increasing attention over the last
decades [40]. This work solves the problem of bringing the result of convolution operation
to the original discretization scale, while preserving the possibility of computation in terms
of RNS, i.e., it responds to the above trend.

Itis of importance that the latter approach allows for generalization, since RNS can be
considered as a special case of finite algebraic rings [24]. A wide variety of rings can be used
for representation any set containing a finite number of elements, including non-associative
ones [41,42]. This, in particular, justifies the use of the term “partial convolutions”, which
implies the possibility of a subsequent transition to the use of finite algebraic rings of
various types. A concrete example of using non-trivial algebraic rings for digital signal
processing was given in [18]. The generalization of the RNS approach obviously creates
additional opportunities for digital signal processing.

Further, some subsets of an algebraic ring used to represent sets containing a finite
number of elements in many cases (including the case considered in this paper) can be put
in correspondence with Galois fields. Such fields are also increasingly used in information
technology, in particular, in cryptography to improve the reliability of encoding [43,44].

Computations in such fields can be realized directly in the form of electronic circuits,
and research in this direction is also actively carried out at present [45,46]. More precisely,
computations of this kind can be realized on the basis of chips with tunable logic structure,
which are also actively used nowadays [47,48]. Reduced convolution operation is therefore
of interest, also from the point of view of implementing the corresponding computations
(including the implementation of convolutional neural networks) directly by specially
programmed chips.

An example in this respect is a very definite problem arising in the processing of
satellite video information intended for remote sensing of the Earth. Communication
channels have limited bandwidth, so it is important to exclude images in those situations
when the Earth surface is covered by clouds [49,50]. To solve this problem, it is expedient
to use on-board means of information pre-processing, which can use convolutional neural
networks. This particular example demonstrates the importance of the problem solved in
this paper. A sufficiently coarse sampling scale can be used to exclude frames with cloud
cover. Applving the convolution operation without reduction to the original sampling
scale will not only correspond to the excess of accuracy, but will also require additional
computational resources. It becomes especially important to overcome this difficulty when
the corresponding operations are performed directly by the onboard computer.

The transition to computations in Galeis fields has one more aspect. Namely, in this
case it is possible to operate with functions taking values on variables of multivalued
logic [23,24]. This aspect is important in those cases when, for example, we analyze the
relationships between the preceding and following values of time series data, which are
also used in different sciences. Provided the system is linear, it can often be assumed
that such relationships are given by a convolution operation. The transition to the use of
multivalued logics in the future allows us to raise the question of identifying true logical
relationships in prediction, but the convolution operation itself should be reduced to logical
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variables. In this case, the preservation of the discretization scale is essential too, since this
corresponds to the use of the same set of logical variable values for both the input and
output functions.

Thus, this work, which provides the possibility of reducing the convolution operation
to computations in Galois fields of relatively small size (which is ensured, among other
things, by bringing the discretization scale of the result to the discretization scale of the
original functions), contributes, among other things, to the interdisciplinary integration
hetween the above-mentioned fields of research.

3. Background Section

Consider the usual expression for the convolution operation applied to functions

taking discrete values
Upur(i) = D K() Upnli— ) ®
i

where K{(j)—convolution operator core, Uy (i) and Uy, (i) —functions, which we will treat
as “output” and “input”, respectively.

Let us assume that the functions Uy, (i) and K(j) are digital, i.e., each of them at each
of the index values takes one of N discrete values corresponding to the sampling scale
arising from the nature of the problem to be solved.

Besides, we will also assume that the function K(j) is different from zero only at M
clock cycles

Then the number of values Ny, which can be taken by the function Uy (i), generally
speaking, lies within the limits defined by the inequality

0< Ny < MN? (2)

One can see that this numerical range differs significantly from the range of variation
of the original function U, (i).

The reduction of these two ranges to each other can be performed by the operation of
division by a suitable number M; followed by rounding to an integer.

Operations of this kind, however, cannot be performed using operations only on
integers, for example, they cannot be reduced to modulo operations.

Consequently, the problem is to find algebraic operations in terms of integers, allowing
for the reduction of the scale of the function Uy, (7) o the same scale as the function Uy, (7).

This problem is solved in this paper using the method of partial convolutions.

4. Methods
4.1. Representation of Integer Computations in Terms of Finite Algebraic Rings

The basic method used in this paper is the theory of algebraic rings. The existence of
rings R which are decomposed into a direct sum of ideals r; is proved in this theory

R=ri+ro+ - +r (3)
Each of these ideals is generated by idempotent elements ¢;
t; = Re; (4)
Such elements cancel each other out
eie; =0, 1 £ f; ee; = & (5)

Their sum is equal to the unit of the ring R

Y e=1 (6)

i
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The simplest example of rings of this type is generated by a homomorphism of the
ring of integers to the ring of residue classes modulo p for the case where the number p is
the product of several prime numbers p;.

P:}?1}92...pN (7)

In this case one can represent an arbitrary element of the ring R in the form
U =-et +eua + - Fenuy (8)

where ¢;—idempotent mutually cancelling elements, and #; = 0,1,2,..., p:.
Idempotent elements are formed by the rule

N
e; =] | ©)
i

where #,—integer. The choice of these numbers is based on the condition
€:8; = 1 (10)

One can see,
g;p; = 0mod P (1

since any product of the form (11) contains a multiplier P = p1p2 ... p.

Indeed, the idempotent element e; contains (9) the product of all prime factors of the
number P except p;, and p; enters formula (11) directly.

With the choice of integers made, a; also holds.

e1tes+--+ey=1modP (12)

Note that a special case of the representation (3) is the case when we consider the ring
of residual classes modulo an integer.

In this case, the representation in the form (3) corresponds to RINS computations.

To illustrate, consider an example corresponding to the case of the product of three
prime numbers 2, 3 and 7. The product of these numbers is 42. We will consider the ring of
residue classes modulo 42.

Idempotent mutually cancelling elements can be easily found by the scheme corre-
sponding to formula (9). Let us compose the products 3.7 = 21, 3.2 = 6,27 = 14, All
these elements will (when calculating modulo 42) cancel each other, since the result of their
multiplication by each other will contain the factor 2-3.7, i.e,, this result will be a multiple
of 42,

By direct verification it is also possible to verify that for the case under consideration
the following equations holds.

36-36 = 36 mod 42, 2828 = 28 mod 42, 21-21 = 21 mod 42 (13)
Accordingly, when carrying out calculations modulo 42, the record (8) takes the form
=211 + 281> + 3613 (14)

where
1 =01, u»=0,1,2, u3 =0,1,...,6 (15)

The relation (12} is also fulfilled

21 + 28 + 36 = 1 mod 42 (16)
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Note also that the representation (8) and its special case (14) can be considered as a
representation of numbers not exceeding 42 in a number system with hybrid base.

Indeed, one can see an analogy [51] between the notation (14) and the expression that
defines the positional notation of a number, say, in a number system with base 10.

a=ay+ 1004 +10% a2 + - - (17)

It can be seen that in both cases there is a certain selected set of numbers, which form
a representation of any other number as a sequence of symbols from a finite set (digits).

In the case of the notation (17), such a set is formed by the powers of the base number
10. But, such a choice, in general, is not obligatory.

The standard decimal notation ¢ = - - - o149 A similar notation can be used from
expression (8) or its special case (14). For example, for the representation of (14) one can
write down

= Uytotiy (18)

where the positions occupied by specific values i; can be interpreted as analogues of digits
in the traditional number system.

An essential advantage of the considered number system is the possibility of indepen-
dent operation with analogues of digits of a number.

The operation of addition in decimal (binary, etc.) representation is obviously con-
nected with the fact that the result of adding the lower digits, generally speaking, will affect
the result obtained by adding the higher digits.

When using the representation of the form (14), such a problem disappears. The “high”
and “low” digits can be handled in a completely independent way.

Consider the product of two numbers written in the form (8)

4Dy @ — (elugl) +ezu£1) +. 4 eNug)) (elugz) +ezu£2) +- - +eNu§)) (19)
Because ¢; are mutually cancelling idempotent elements, we have
uy@ = u?)u?) + egugl)ugz) + e —}—eNug)ug) (20)
In this case, the computation of products uz(l)uz(z) is actually performed in the sense of
the multiplication operation in the Galois field GF(p;), since the multiplication operation is
performed module p;.
This conclusion is also true for the addition operation.
Expression (20) unambiguously shows that the result of calculating the product of
“higher” digits is indeed completely independent of the result of calculating the product of

“lower” digits. Moreover, such digits can be interchanged.
Formulas (19) and (20) allow for the passing to partial convolutions.

4.2. Partinl Convolutions

Let us choose the above prime numbers p; in accordance with next formula

uouf(i) < MpP2..--PN (21)

where N—number of digits in hybrid coding.

Then, one can consider that the convolution formula applied to discrete functions (1)
is written in terms of elements of rings admitting the representation (8).

With the assumption made, we can substitute into formula (1) the expansion through
idempotent elements, and for both K(j), and U, (i}. We have:

uoui(i) = Z] (Zm eme(]) ) (Zm €m um,iﬂ (1 - ])) (22)
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By reversing the signs of summation, we obtain

Uoue (1) = Zm Em (Z; Ko () Wi (1 — 1) ) (23)

when deriving formula {23), it is taken into account that idempotent elements &, cancel
each other at multiplication (5).

Accordingly, the multiplier at e,, contains only values with the same index m.

In the last formula, the summation at index j is taken in separate brackets to emphasise
the following circumstance.

When the functions corresponding to discrete signals are represented in a hybrid
number system, the convolution operation is factorised. Each component of the used
functions can be operated with in a completely independent way.

Accordingly, in this case we can speak about partial convolutions. We have:

uaut,m (1) — Z] Km (]) um,in (1 - ]) (24)

Note that the operations of addition and multiplication in formula (24), as fellows
from the above, are performed modulo py, i.e., operation (24) is performed in the Galois
field GF (pn).

In particular, the description of any “digitized” system (a system reduced to discrete
values) possessing the property of invariance with respect to the shift operation on the
current discrete variable is exhausted by operations of this kind.

It is essential that the use of partial convolutions in terms of Galois fields is admissible
only when an inequality of the form (2) is satisfied. In this case, the maximum value that
can be given by the convolution operation does not exceed the integer modulo which the
computation is performed.

Consequently, in this case, the result of operations module coincides with the results
of operations in the sense of ordinary addition and multiplication of integers.

Here, however, a nuance arises. Indeed, if the original function varied in the range
corresponding to integers not exceeding Ny, the convolution result can vary within a much
wider range, formula (2).

Consequently, if the original function was mapped to a hybrid number system contain-
ing N digits, the number of digits must be increased to adequately represent the convolution
result of the form (1).

The solution to this problem serves as the foundation for the proposed approach.

5. Results
5.1. Increasing the Number of Digits in the Hybrid Number System

Let us find a rule according to which a number represented in a hybrid number system
with a certain number of digits can be written in a similar system with a larger number
of digits.

The number 1 in an arbitrary encoding of the type under consideration is represented
by the sum of idempotent elements (an example is formula (16)).

l=e14+e2+ - +eymodF (25)

where the comparison is modulo the integer P,

Accordingly, when adding a unit to any number, a unit is added to each of the digits.
But for each of the digits the addition is performed modulo the prime number p;, which
corresponds to the given digit. Hence,

wn+1) =wn) +1(p) (26)
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Formula (26) allows, among other things, for an explicit switch from writing a number
in a decimal number system to writing in a number system with a hybrid base. Namely,

u; = U mod p; (27)

i.e., the value of each of the digits is directly the initial number U taken modulo p;. Thus,
formula (27) allows for the reduction of any original function given in the usual numerical
form to the form corresponding to the hybrid number system.

The value of the additional digit can also be found using formula (27).

Supplement the hybrid number system formed by the prime numbers p;, i = 1,2,..,N
with one more digit corresponding to the prime number pay 1.

The number of idempotent elements appearing in the formula (8) will increase by one,
thus

~ N . ~ N
e = MPNHH#]» pii=1,... N;enyi =ann] [, pi (28)

In particular, it means that idempotent elements change, but in the formula of the
form (8) the values of the components u;; i = 1, .., N remain unchanged.

The fact follows from formula (26). This formula is also applicable to calculate the
value of the additional component 1.

Consequently, the operations of calculating partial convolutions in the fields GF(p;);
i =1,.., N remain unchanged when one more digit is added. Its value, as follows from
formula (26) is

Uil = U mod Prn+1 (29)

This formula solves the problem of number representation when increasing the number
of digits; however, the next question arises. It is necessary to reduce the result of calculations
in the system with an increased number of digits to the original sampling scale, in which
the considered functions take integer values in the range from 0 to Nj.

The most obvious way of reduction to the original scale is given by the formula

1
PN+1

Uour (i) = Y KG) U= 1) (30)
where |a| is floor function symbol.

The formula is obtained from the following considerations.

According to the above assumptions, the functions under the convolution sign change
in therange from 0 to P. The result of convolution calculation changes in the range from 0 to
Pprri1. Therefore, to bring the sampling scale to the original one, the result of convolution
calculation should be divided by pay1.

However, as noted in Section 2, it is an urgent task to find a method that would allow
for the obtainment of the same result as formula (30), but only by algebraic means, i.e,
without using fractional numbers,

5.2. Formula for Converting the Result of Calculations Using Partial Convolutions to the Original
Sampling Scale

The following lemma is valid.
For two natural numbers wy and w,, w1 > wy and any natural n the following holds.
The value g

g = (w —wo) {iJ mod ws (31)
un
where |a| is floor function symbol, can also be calculated as
§=(n—g) moduw,y, g=nmodw, (32)

The nature of the change in the value of § with increasing » for the special case p; = 19,
p2 = 17 is illustrated by curve 1, Figure 1. The figure emphasizes that the value of 4 remains
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constant at each of the intervals corresponding to the number pp = 17, i.e,, it changes by a
jump when the abscissa value becomes a multiple of 17.

C;: 20 A
16

12

8

4 =
-50 50 150 250 350

n

Figure 1. Mllustration of the lemma proof; w; = 19, un = 17, curve 1 {(blue)—calculations of g by
formula (31), i.e., through the operation of calculating the integer part of the number, curve 2 (red)—
values of the sum g + 3, where g is calculated by formula (32}, i.e., using only modulo operations.

This property allows us to prove the lemma under consideration.

Figure 1 also shows the dependence of g + 3, where g is calculated by formula (32).
The dependence of 4 is presented with a shift by 3 so that the curves de not overlap.

It can be seen that if the artificial shift by 3 is not taken into account, the curves coincide.

Similar curves, but for the case py = 11, p2 = 8 are presented in Figure 2. This figure
also emphasizes that the value of 4 changes by a jump when the value of abscissa becomes a
multiple of p; = 11. This figure also clearly shows that the specific value of g also depends
on the value of ps, in particular, at the chosen values of py and p2 the considered function
does not have a pronounced periodic character. In the future, this fact will be used to justify
the choice of the relationship between the numbers p1 and pa.

o 12
B |
+
o
8
4
0 >
0 20 40 60 80 100 120
n

Figure 2. [llustration of the lemma proof; wy = 11, wz = 9, curve 1 (blue}—calculations of 4 by
formula {31), i.e., through the operation of calculating the integer part of the number, curve 2 (red)—
values of the sum g + 3, where g is calculated by formula (32), i.e., using only module operations.

Let us return to the proof of the lemma formulated above.



Appl. Sci. 2024, 14, 6388

10 of 19

There is an identity
n—n(modwy) = LiJ W (33)
Wy

where the notation mod w is written out explicitly, because the difference on the left side
of (33) is calculated in the sense of the usual operations with integers,

The identity (33) follows from the fact that an arbitrary number n can be represented
as the sum of the residue of division by an integer w; of the integer part of the result of
such division

n =n(mod w;) + L{%J w1 (34)

Provided that wy > wy, the following equality is also true

(O RCEE

Since the value L%J wo is known to be divisible by w».

Hence, applying the operation of taking modulo wy to both parts of equality (33),
we obtain
((wl —ws) LZJ) = (n —n(mod wy)) mod wy (36)
1
The lemma is proved.
The most interesting case is when wy — wy = 1. Then the left part of equality (36)

becomes equal to %J (mod w>).
Note that if we consider such a range of variation of n that 0 < n < wjws, then
0< L%J < w3 takes place. Hence,

n n
Hence, in the considered case, the remainder from dividing #n by the integer w is
expressed as

L";J — (1 — n(mod w1)) (mod ) (38)

It can be seen that, in the considered particular case, the proved lemma allows for the
reduction of the calculation of the value L%J to the operations of modulo taking.

This allows us to preserve the character of sampling of the scales of the “input” and
“output” functions.

Let us obtain specific formulas that allow us to perform this operation.

The initial range of variation of the functions under consideration, whose values are
represented in the form (8), is limited by the number wy = ]‘[{\I p;-

To fulfill the condition ensuring the fulfilment of formula (38), the prime number pyq
corresponding to the additional digit must be given by the formula

PN = Hi\r pit+1 (39)

Examples of prime numbers ppy 1 represented in the form (39) are given in Table 2.
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Table 2. Multipliers p; giving examples of numbers of the form (39). (The symbol “-” means that this

multiplier is not included in M).

Pa Ps P2 41 M=pyp,...Ps Pnn Mpyia
- - 3 2 6 7 42
- - 5 2 10 11 110
- - 11 Z2 22 23 506
- 5 3 2 30 31 930
- 7 3 2 42 43 1806
- 11 3 2 66 67 4422
- 7 5 2z 70 71 4970
- 17 3 Z2 10z 103 10,506
- 13 5 2 130 131 17,030
19 5 2 190 191 36,290
7 5 3 2 210 211 44 310
- 31 5 2 310 311 96,410
11 5 3 2 330 331 109,230
- 19 11 2 418 419 175,142

As Table 2 emphasizes, the using even relatively small numbers p; gives possibility to
ensure the computation of partial convolutions of practical interest. Indeed, the range of
variation of the numbers represented in the form under consideration is quite large (it is
bounded by the product Mpyn_1).

Proceeding from the above, we will consider the case when

w =pya =1 pi+Lw =TT p (40)

To return to the original sampling scale, operation (38) must be applied to the result of
the computation using partial convolutions, which is represented in the form.

~

U=ejuy +extiy + - - +enyun + enr1Un+1, mOd(EUﬂUz) (41)

This notation, in particular, emphasizes that the integer values of U vary in the range

0 < U< wiws.
According to formula (33), for an arbitrary integer s it is true that

s
s{mod wywa) =5 — {MJ wyw (42)
From where
(s(mod wyw2))mod wy = s mod uy (43)
since Lﬁj wywy is divisible by wy.
Similarly,

[s(mod wyws)](mod ws) = s(mod ws) (44)
There are only the values calculated by mod w» or mod w; in the right part of the
formula (38).

Consequently, as follows from formulas (43) and (44), instead of the value lNI given
by formula (41), i.e., providing for taking mod wyw», we can use the value U calculated
according to the usual rules of addition and multiplication

~ N ~ N
U= pn1), ui‘xinﬁg p; +anp] I; piunva (45)
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Or, taking into account (40)
N

U = o (¥, 8] T 7y) +enertin (46)

Let us apply the mod w; operation to expression (32). Then
U(mod EU1) = (€N+1 uN+1)(mod HJ1) — HUN1 (47)

where it is taken into account that

¢; =1 mod p; (48)

The identity (48) follows directly from (25).
As aresult, we obtain the following calculation formula, which solves the problem.

u ~
\‘J = (ZT uiwjni#1 p] — uN—H) mod wo (49)

wy

Let us consider how exactly the obtained formula can be applied to calculate digi-
tal convolutions.

6. Discussion
6.1. Justification of the Constructiveness of the Proposed Approach

The advantages of formula (4%9) over operations of the form (30) are as follows,

The calculations used in formula (49) use only integers. Consequently, the speed
of execution of this kind of operation is obviously higher than the speed of execution of
operations in which the division operation is used.

Moreover, all of these operations, in principle, can be realized by means of specific
adders and multipliers modulo integers. Circuits of this kind of adders and multipliers are
known [29-32] and they continue to be improved. It should also be taken into account that
integrated circuits with configurable logic are now known too [52,53].

However, even disregarding the above considerations, the computation by formula (51)
is known to have an advantage over operations such as (30). Indeed, the range of varia-
tion of each partial convolution in the computation in Galois fields GF(p;) is organised
by the integer p; and, hence, all summands appearing in formula (51) will not exceed
w =14+ ]_[{\r Py- Let us underline, that actual range of the convolution computation (before

reduction to the original scale) is wywp = (1 + T pj) T P;-
This is what preserves the original sampling scale when computing the convolution.
Let us consider a concrete example illustrating this advantage.

We will use the ring of module 110 residue classes. The elements of such a ring are
represented in the form

# = 551y + 661y + 10013 mod 110 (50)

where
=01, u»=0,1,...,5 13 =0,1,...,10 (51)

The relation (12) is also fulfilled
55+ 66+ 100 =1 mod 110 (52)

The prime number 11 is representable in the form (39): 11 = 1 4 2-5. Consequently,
formula (50) can be considered as the result of increasing the number of digits in the number
system corresponding to the ring of subtraction classes modulo 10. In this ring

# =511 + 6-ur mod 10 (53)
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where
L{1:0,1, uZ:O,l,...,5, (54)
It can also be written as
u =11-(5-11 + 6-up) + 100-13 mod 110 (55)

Accordingly, the calculation formula (49) for the considered particular case takes the

following form
LUEJ = (511 + 6-up — ti3) mod 10 (56)
1

where 1; are the values of the digits of the numbers resulting from the calculation of partial
convelutions in the number systemn corresponding to formula (50).

Let us apply the formula to calculate the convolution of model functions.

As the first of such functions, we will use the function fi, shown in Figure 3, curve 1.
As the second model function f; we will use the rectangle function given by the relation

0, |k 5
rb={y 22 7)
= 10 A aa ee
N~ o opsee’e @
8 B Py ..‘. :
e /N
6 F o e
4 W g
o L
. .)-i.'o
2 = .‘...'
" N g
() Sessesose—Lo—s—s 4 L >
0 10 20 30 40

k

Figure 3. Model function f; {curve 1, red dots) and the result of applying the moving average
calculation operation to it (curve 2, green dots).

It can be seen that fj models a function describing some noisy transient process. Its
convolution with the function f» corresponds to the moving average calculation, which
provides noise filtering. If fractional values are allowed, the convolution of functions f;
and f» is expressed by the usual moving average formula

(R0} = Tt ) 58)

Formula (60) takes into account that function (59) is different from 0 at 11 clock cycles,
including the clock with index 0. Accordingly, the summation starts at clock k — 5 and ends
at clock k& + 5.

The calculations according to formula (58) are also presented in Figure 3, curve 2. It
can be seen that the result of convolution calculation really gives a function describing the
model transient process. The function obtained by applying the convolution operation in
the form (58) is indeed quite smooth, ie., this operation suppresses the noise present in the
model function, as one would expect.

The presented simple example, among other things, clearly shows that the operation
of reducing the convolution result to the original scale is indeed justified.
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In many cases, this is also dictated by physical considerations.
Figure 4 also presents the smoothed model curve obtained from the original function
using the moving average method (curve 1).
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Figure 4. Model function f; smocthed using the moving average method (curve 1, green dots) and
the result of calculating the analogue using formula (51), curve 2, red dots.

The same figure shows the result of calculations by formula (51) using partial convolutions.
Specifically, the formula was used

(o= (5-() +6-{ ) — () )moa 10 )

where .
< f11> = (Zj.jf A (k),modz), mod2 (60)
() = (T0it: Ak, modS ), mods (61)
< f13> - (Ejf A (k),modn),modu (62)

Formulas (60)—(62) correspond to calculations in Galois fields. The values of the
original function taken modulo the corresponding prime number p; are summed up, and
then the operation of taking modulo p; is applied to the summation result again.

It can be seen that the presented curves coincide with the accuracy up to rounding
down, i.e., formula (49) really provides the desired result.

It can also be seen that curve 2, Figure 4, which appreximates the smoothed curve
with downward rounding accuracy, can indeed be derived from calculations performed in
(Galois fields.

We emphasize that Figure 4 shows that the result of calculations performed only
in Galois fields (in particular, without using fractional values) coincides (with rounding
accuracy) with the result ebtained by formula (58).

Thus, the used model example serves as a clear demonstration of the adequacy of
the proposed methodology of bringing the convolution operation to calculations in Ga-
lois fields.

The peculiarities of the methodology used are also vividly illustrated by Figure 5,
which shows plots the results of intermediate calculations using formulas (60)—(62).
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Figure 5. Plots of partial convolutions for three digits of number representation modulo 110; {a—c) cor-
respond to partial convolutions in Galois fields GF(2), GF(5), and GF(11), respectively.

As can be seen in Figure 5, all the functions presented in this figure, vary within the
limits corresponding to a particular prime number p;.

Besides, the behavior of obtained functions is not ordered, yet the utilization of
formula (51) enables the desired outcome to be achieved.
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Accordingly, this figure serves as another visual illustration of the nature of the
technique used. The result of the above convolution is computed using a set of functions,
each of which varies within finite limits corresponding to a certain Galois field.

Further, all operations for computing partial convolutions in accordance with the
above are de facto performed in Galois fields.

Consequently, the numerical analogue of the convolution theorem [15] applies to each
of them.

These functions are direct analogues of the transfer functions used in classical linear
circuit theory.

Formally, we can write at once

FUout(0)] = (X (Ko O] F(Uo ))& T T P — Ko () (U ()] ) (o ) (€

where F[f(i)] is a notation for the Galois Field Fourier Transform.

Here, of course, there arises a nontrivial problem of finding an adequate basis repre-
senting an analogue of harmonic functions; however, the relation (63) already shows that
the proposed approach in the future allows for finding transfer functions for systems of
different nature described by digital convelution operations.

6.2. Some Perspectives on the Use of the Proposed Approach

Let us consider the most illustrative example of using the operations proposed in this
paper. It is related to the analysis of time series of data, which arise in various scientific
disciplines, for example, in meteorology [54], as well as in econometrics [55], etc.

Neural networks as well as various intelligent systems on this base are often used
for analyzing such data series (including for forecasting purposes) [56-58]. In this respect,
convolutional neural networks are obviously of particular interest, since the considered
systems, as a rule, possess the property of invariance with respect to the time shift operation.

The proposed approach allows one to reduce any convolution operations to operations
in terms of logical variables, which, among other things, is of interest from the point of
view of revealing the true causal relations inherent in a particular system.

This example, however, is mainly for illustrative purposes.

Much more important seems to be the next step related to the application of the
numerical convolution theorem [18].

Namely, if all operations corresponding to the convolution to the original discretization
scale are reduced to convolutions in the sense of Galois fields, then it is acceptable to pass
from the convolution to the analog of the transfer function (the Fourier—Galois image of the
convelution is the product of the Fourier—Galois images of the functions under its sign).

In the future, this creates prerequisites for the formation of convolutional neural
networks with predetermined properties (i.e., neural networks possessing a given analog
of the transfer function).

This step, however, requires the formation of appropriate sets of orthogonal basis functions.

Besides, it is appropriate to emphasize that the interest to the practical use of mul-
tivalued logics at present is connected not only with the improvement of digital signal
processing, but also with the improvement of Al In particular, as shown in [59], the bio-
logical prototype of Al: human intelligence—is not reducible to binary logic. At the same
time, there is no doubt that the processing of signals by the human brain also corresponds
to the above-mentioned symmetry property. This opens additional perspectives for using
the results obtained in this work.

7. Conclusions

Thus, a method that allows us to reduce convolution operation to calculations modulo
integer is proposed. In other words, the proposed approach allows us to bring the operation
of reduced convelution computation to computations in Galois fields.
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In this case, the number of discrete levels of functions under the convolution sign
coincides with the number of discrete levels corresponding to the result of the convolu-
tion operation.

It makes sense to treat the convolution operation, in which the discretization character
of the initial and resulting functions is preserved, as a reduced convolution.

The constructiveness of this approach is demenstrated on a concrete model example.

In constructing this method, RNS-based computations are considered as a special
case of computations in finite algebraic rings, which creates prerequisites for its use in the
transition to algebraic rings of different varieties.

Further development of this ap proach implies, among other things, the use of functions
taking values corresponding to variables of multivalued logic.

The results are also of interest in terms of creating convolutional neural networks with
predetermined properties.
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